<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 1
Feb.  2020
Turn off MathJax
Article Contents
LIU Xiao-lu, ZHAO Zi-xi, GUI Zi-yu, GONG Ai-jun. Overview of microbial technology in the utilization of rare earth resources[J]. Chinese Journal of Engineering, 2020, 42(1): 60-69. doi: 10.13374/j.issn2095-9389.2019.09.12.003
Citation: LIU Xiao-lu, ZHAO Zi-xi, GUI Zi-yu, GONG Ai-jun. Overview of microbial technology in the utilization of rare earth resources[J]. Chinese Journal of Engineering, 2020, 42(1): 60-69. doi: 10.13374/j.issn2095-9389.2019.09.12.003

Overview of microbial technology in the utilization of rare earth resources

doi: 10.13374/j.issn2095-9389.2019.09.12.003
More Information
  • As an important resource for the development of modern industry, rare earth elements are widely used in nuclear technology, batteries, permanent magnet, electronic products, catalysis, and superconducting technology, and they have been mined at a considerable large scale. China’s rare earth resources are abundant, and their reserves account for approximately 36.7% of the world’s total reserves. Over the recent years, global rare earth resources are generally faced with over-exploitation, low utilization rates, and serious environmental pollution problems. Therefore, there is an urgent need for the development of recovery systems that are inexpensive and cause less pollution. Rare earth elements can be widely involved in the metabolism of compounds in various micro-organisms and may have mining capabilities. The use of microbial technology to mine and recover rare earth resources has provided a novel green and efficient method for the utilization of rare earth resources, and research in related fields has continued intensify. This paper primarily introduced the important role and utilization status of rare earth resources, summarized the distribution and characteristics of rare earth minerals in China, and identified the problems associated with rare earth mining and the advantages of microbial mining. Furthermore, it reviewed the development process of rare earth mining using micro-organisms, summarized its research progress, and introduced the research mechanism of microbial mining, primarily including related research on the mechanism of microbial leaching, adsorption and accumulation of rare earth elements, separation methods, species distribution, and mechanism action of rare earth ore mining microorganisms. Considering minerals of the Bayan Obo deposit in China and the Mount Weld deposit in Australia as examples, the extraction of rare earth elements from ore by microbes selected from the surrounding environment has been explained. Moreover, the recovery of rare earth elements in low-grade ore and waste by micro-organisms has been briefly described. Based on the current status of microbial mining of rare earth ore, future challenges and prospects of microbial utilization of rare earth elements have been proposed.

     

  • loading
  • [1]
    Deady E A, Mouchos E, Goodenough K, et al. A review of the potential for rare-earth element resources from European red muds: examples from Seydisehir, Turkey and Parnassus-Giona, Greece. Mineralogical Mag, 2016, 80(1): 43 doi: 10.1180/minmag.2016.080.052
    [2]
    Alonso E, Sherman A M, Wallington T J, et al. Evaluating rare earth element availability: a case with revolutionary demand from clean technologies. Environ Sci Technol, 2012, 46(6): 3406 doi: 10.1021/es203518d
    [3]
    Goodenough K M, Wall F, Merriman D. The rare earth elements: demand, global resources, and challenges for resourcing future generations. Nat Resour Res, 2018, 27(2): 201 doi: 10.1007/s11053-017-9336-5
    [4]
    Massari S, Ruberti M. Rare earth elements as critical raw materials: focus on international markets and future strategies. Resour Policy, 2013, 38(1): 36 doi: 10.1016/j.resourpol.2012.07.001
    [5]
    Haque N, Hughes A, Lim S, et al. Rare earth elements: overview of mining, mineralogy, uses, sustainability and environmental impact. Resources, 2014, 3(4): 614 doi: 10.3390/resources3040614
    [6]
    李浩然, 馮雅麗, 石紅, 等. 微生物浸出深海多金屬結核中有價金屬. 北京科技大學學報, 2000, 22(6):489 doi: 10.3321/j.issn:1001-053X.2000.06.001

    Li H R, Feng Y L, Shi H, et al. Bio-leaehing valuable metals from multimetallic nodules in the deep sea bed. J Univ Sci Technol Beijing, 2000, 22(6): 489 doi: 10.3321/j.issn:1001-053X.2000.06.001
    [7]
    Zepf V. Rare Earth Elements: A New Approach to the Nexus of Supply, Demand and Use: Exemplified along the Use of Neodymium in Permanent Magnets. Berlin: Springer Science & Business Media, 2013
    [8]
    Aide M T, Aide C. Rare earth elements: their importance in understanding soil genesis. ISRN Soil Sci, 2012, 2012: 783876
    [9]
    Chistoserdova L. Lanthanides: New life metals? World J Microbiol Biotechnol, 2016, 32(8): 138 doi: 10.1007/s11274-016-2088-2
    [10]
    Shiller A M, Chan E W, Joung D J, et al. Light rare earth element depletion during Deepwater Horizon blowout methanotrophy. Sci Rep, 2017, 7: 10389 doi: 10.1038/s41598-017-11060-z
    [11]
    Watling H. Microbiological advances in biohydrometallurgy. Minerals, 2016, 6(2): 49 doi: 10.3390/min6020049
    [12]
    Goldstein A H, Krishnaraj P U. Phosphate solubilizing microorganisms vs. phosphate mobilizing microorganisms: what separates a phenotype from a trait? // First International Meeting on Microbial Phosphate Solubilization. Salamanca, 2007: 203
    [13]
    Omar N B, Merroun M L, Pe?alver J M A, et al. Comparative heavy metal biosorption study of brewery yeast and Myxococcus xanthus biomass. Chemosphere, 1997, 35(10): 2277 doi: 10.1016/S0045-6535(97)00306-8
    [14]
    Karavaiko G I, Kareva A S, Avakian Z A, et al. Biosorption of scandium and yttrium from solutions. Biotechnol Lett, 1996, 18(11): 1291 doi: 10.1007/BF00129957
    [15]
    Ilyas S, Kim M S, Lee J C, et al. Bio-reclamation of strategic and energy critical metals from secondary resources. Metals, 2017, 7(6): 207 doi: 10.3390/met7060207
    [16]
    季根源, 張洪平, 李秋玲, 等. 中國稀土礦產資源現狀及其可持續發展對策. 中國礦業, 2018, 27(8):9

    Ji G Y, Zhang H P, Li Q L, et al. Current status of rare earth resources in China and strategies for its sustainable development. China Min Mag, 2018, 27(8): 9
    [17]
    Abreu R D, Morais C A. Purification of rare earth elements from monazite sulphuric acid leach liquor and the production of high-purity ceric oxide. Miner Eng, 2010, 23(6): 536 doi: 10.1016/j.mineng.2010.03.010
    [18]
    劉琦, 周芳, 馮健, 等. 我國稀土資源現狀及選礦技術進展. 礦產保護與利用, 2019, 39(5):76

    Liu Q, Zhou F, Feng J, et al. Review on rare earth resoueces and its mineral processing technology in China. Conservation Utilization Miner Resour, 2019, 39(5): 76
    [19]
    Ober J A. Mineral commodity summaries 2017[R/OL]. U.S. Geological Survey (2017-1-31)[2019-9-12]. https://pubs.er.usgs.gov/publication/70180197
    [20]
    袁忠信, 白鴿. 中國內生稀有稀土礦床的時空分布. 礦床地質, 2001, 20(4):347 doi: 10.3969/j.issn.0258-7106.2001.04.008

    Yuan Z X, Bai G. Temporal and spatial distribution of endogenic rare and rare earth mineral deposits of China. Miner Deposits, 2001, 20(4): 347 doi: 10.3969/j.issn.0258-7106.2001.04.008
    [21]
    劉健, 凌明星, 李印, 等. 白云鄂博超大型REE?Nb?Fe礦床的稀土成礦模式綜述. 大地構造與成礦學, 2009, 33(2):270 doi: 10.3969/j.issn.1001-1552.2009.02.011

    Liu J, Ling M X, Li Y, et al. REE ore-forming models of giant Bayan Obo REE?Nb?Fe ore deposit: a review. Geoteconica et Metallogenia, 2009, 33(2): 270 doi: 10.3969/j.issn.1001-1552.2009.02.011
    [22]
    Brandl H, Barmettler F, Castelberg C, et al. Microbial mobilization of rare earth elements (REE) from mineral solids—a mini review. AIMS Microbiol, 2016, 3(2): 190
    [23]
    Mullen M D, Wolf D C, Ferris F G, et al. Bacterial sorption of heavy metals. Appl Environ Microbiol, 1989, 55(12): 3143
    [24]
    Ozaki T, Suzuki Y, Nankawa T, et al. Interactions of rare earth elements with bacteria and organic ligands. J Alloys Compd, 2006, 408-412: 1334 doi: 10.1016/j.jallcom.2005.04.142
    [25]
    Horiike T, Yamashita M. A new fungal isolate, Penidiella sp. strain T9, accumulates the rare earth element dysprosium. Appl Environ Microbiol, 2015, 81(9): 3062 doi: 10.1128/AEM.00300-15
    [26]
    Bonificio W D, Clarke D R. Rare-earth separation using bacteria. Environ Sci Technol Lett, 2016, 3(4): 180 doi: 10.1021/acs.estlett.6b00064
    [27]
    Moriwaki H, Yamamoto H. Interactions of microorganisms with rare earth ions and their utilization for separation and environmental technology. Appl Microbiol Biotechnol, 2012, 97(1): 1
    [28]
    孟春瑜, 荊乾坤, 馬駿, 等. 微生物技術在稀有金屬資源利用中的研究概況. 稀有金屬, 2015, 39(4):371

    Meng C Y, Jing Q K, Ma J, et al. Overview of microbiological technology for recovery of rare metal resources. Chin J Rare Met, 2015, 39(4): 371
    [29]
    Brisson V L, Zhuang W Q, Alvarez-Cohen L. Bioleaching of rare earth elements from monazite sand. Biotechnol Bioeng, 2016, 113(2): 339 doi: 10.1002/bit.25823
    [30]
    Goyne K W, Brantley S L, Chorover J. Rare earth element release from phosphate minerals in the presence of organic acids. Chem Geol, 2010, 278(1-2): 1 doi: 10.1016/j.chemgeo.2010.03.011
    [31]
    Sashidhar B, Podile A R. Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase. J Appl Microbiol, 2010, 109(1): 1
    [32]
    Reyes I, Bernier L, Simard R R, et al. Effect of nitrogen source on the solubilization of different inorganic phosphates by an isolate of Penicillium rugulosum and two UV-induced mutants. FEMS Microbiol Ecol, 1999, 28(3): 281 doi: 10.1111/j.1574-6941.1999.tb00583.x
    [33]
    Corbett M K, Eksteen J J, Niu X Z, et al. Syntrophic effect of indigenous and inoculated microorganisms in the leaching of rare earth elements from Western Australian monazite. Res Microbiol, 2018, 169(10): 558 doi: 10.1016/j.resmic.2018.05.007
    [34]
    Sand W, Gehrke T. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron (III) ions and acidophilic bacteria. Res Microbiol, 2006, 157(1): 49 doi: 10.1016/j.resmic.2005.07.012
    [35]
    Fathollahzadeh H, Becker T, Eksteen J J, et al. Microbial contact enhances bioleaching of rare earth elements. Bioresour Technol Rep, 2018, 3: 102 doi: 10.1016/j.biteb.2018.07.004
    [36]
    Oliveira R C, Jouannin C, Guibal E, et al. Samarium (III) and praseodymium (III) biosorption on Sargassum sp.: batch study. Process Biochem, 2011, 46(3): 736 doi: 10.1016/j.procbio.2010.11.021
    [37]
    Das N, Das D. Recovery of rare earth metals through biosorption: an overview. J Rare Earths, 2013, 31(10): 933 doi: 10.1016/S1002-0721(13)60009-5
    [38]
    劉愛民. 耐鎘細菌篩選與吸附鎘機理研究及其在鎘污染土壤修復中的應用[學位論文]. 南京: 南京農業大學, 2005

    Liu A M. Isolation and the Mechanism of Cd2+ Adsorption of A Cadmiu-tolerant Bacterium and Its Application in Restoring Cadmium-contaminated Soils[Dissertation]. Nanjing: Nanjing Agricultural University, 2005
    [39]
    Goyal N, Jain S C, Banerjee U C. Comparative studies on the microbial adsorption of heavy metals. Adv Environ Res, 2003, 7(2): 311 doi: 10.1016/S1093-0191(02)00004-7
    [40]
    Philip L, Iyengar L, Venkobachar C. Biosorption of U, La, Pr, Nd, Eu and Dy by Pseudomonas aeruginosa. J Ind Microbiol Biotechnol, 2000, 25(1): 1 doi: 10.1038/sj.jim.7000026
    [41]
    Gadd G M. Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology, 2009, 156(3): 609
    [42]
    Tsuruta T. Accumulation of rare earth elements in various microorganisms. J Rare Earths, 2007, 25(5): 526 doi: 10.1016/S1002-0721(07)60556-0
    [43]
    史小利. 黑曲霉對稀土離子的生物吸附研究[學位論文]. 鄭州: 河南農業大學, 2008

    Shi X L. Studies on Adsorption of the Rare Earth by Aspergillus Niger[Dissertation]. Zhengzhou: Henan Agricultural University, 2008
    [44]
    Takahashi Y, Chatellier X, Hattori K H, et al. Adsorption of rare earth elements onto bacterial cell walls and its implication for REE sorption onto natural microbial mats. Chem Geol, 2005, 219(1-4): 53 doi: 10.1016/j.chemgeo.2005.02.009
    [45]
    Moriwaki H, Koide R, Yoshikawa R, et al. Adsorption of rare earth ions onto the cell walls of wild-type and lipoteichoic acid-defective strains of Bacillus subtilis. Appl Microbiol Biotechnol, 2012, 97(8): 3721
    [46]
    Maleke M, Valverde A, Vermeulen J G, et al. Biomineralization and bioaccumulation of europium by a thermophilic metal resistant bacterium. Front Microbiol, 2019, 10: 81 doi: 10.3389/fmicb.2019.00081
    [47]
    Hassanoen W A G, Desouky O A N, Hussien S S E. Bioleaching of some rare earth elements from Egyptian monazite using Aspergillus ficuum and Pseudomonas aeruginosa. Walailak J Sci Technol, 2014, 11(9): 809
    [48]
    Corbett M K, Eksteen J J, Niu X Z, et al. Interactions of phosphate solubilising microorganisms with natural rare-earth phosphate minerals: a study utilizing Western Australian monazite. Bioprocess Biosyst Eng, 2017, 40(6): 929 doi: 10.1007/s00449-017-1757-3
    [49]
    Desouky O A, El-Mougith A A, Hassanien W A, et al. Extraction of some strategic elements from thorium–uranium concentrate using bioproducts of Aspergillus ficuum and Pseudomonas aeruginosa. Arabian J Chem, 2016, 9(Suppl 1): S795
    [50]
    Feng M H, Ngwenya B T, Wang L, et al. Bacterial dissolution of fluorapatite as a possible source of elevated dissolved phosphate in the environment. Geochim Cosmochim Acta, 2011, 75(19): 5785 doi: 10.1016/j.gca.2011.07.019
    [51]
    Kim Y, Bae B, Choung Y K. Optimization of biological phosphorus removal from contaminated sediments with phosphate-solubilizing microorganisms. J Biosci Bioeng, 2005, 99(1): 23 doi: 10.1263/jbb.99.23
    [52]
    Zhang L M, Dong H L, Liu Y, et al. Bioleaching of rare earth elements from bastnaesite-bearing rock by actinobacteria. Chem Geol, 2018, 483: 544 doi: 10.1016/j.chemgeo.2018.03.023
    [53]
    梁長利, 段敏靜, 陳陵康, 等. 粘質沙雷氏菌對重釔稀土離子的生物吸附. 中國稀土學報, 2018, 36(3):328

    Liang C L, Duan M J, Chen L K, et al. Biosorption of yttrium base heavy rare earth ions by Serratia marcescens. J Chin Soc Rare Earths, 2018, 36(3): 328
    [54]
    Qu Y, Lian B. Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10. Bioresour Technol, 2013, 136: 16 doi: 10.1016/j.biortech.2013.03.070
    [55]
    Tsuruta T. Selective accumulation of light or heavy rare earth elements using gram-positive bacteria. Colloids Surf B, 2006, 52(2): 117 doi: 10.1016/j.colsurfb.2006.04.014
    [56]
    Binnemans K, Jones P T, Blanpain B, et al. Towards zero-waste valorisation of rare-earth-containing industrial process residues: a critical review. J Cleaner Prod, 2015, 99: 17 doi: 10.1016/j.jclepro.2015.02.089
    [57]
    Andrès Y, Thouand G, Boualam M, et al. Factors influencing the biosorption of gadolinium by micro-organisms and its mobilisation from sand. Appl Microbiol Biotechnol, 2000, 54(2): 262 doi: 10.1007/s002530000368
    [58]
    Kazy S K, Das S K, Sar P. Lanthanum biosorption by a Pseudomonas sp.: equilibrium studies and chemical characterization. J Ind Microbiol Biotechnol, 2006, 33(9): 773 doi: 10.1007/s10295-006-0108-1
    [59]
    Xu S X, Zhang S M, Chen K, et al. Biosorption of La3+ and Ce3+ by Agrobacterium sp. HN1. J Rare Earths, 2011, 29(3): 265 doi: 10.1016/S1002-0721(10)60443-7
    [60]
    Palmieri M C, Garcia Jr O, Melnikov P. Neodymium biosorption from acidic solutions in batch system. Process Biochem, 2000, 36(5): 441 doi: 10.1016/S0032-9592(00)00236-3
    [61]
    Vlachou A, Symeopoulos B D, Koutinas A A. A comparative study of neodymium sorption by yeast cells. Radiochim Acta, 2009, 97(8): 437
    [62]
    Hosomomi Y, Baba Y, Kubota F, et al. Biosorption of rare earth elements by Escherichia coli. J Chem Eng Jpn, 2013, 46(7): 450 doi: 10.1252/jcej.13we031
    [63]
    王慧琴. 黃孢原毛平革菌對稀土離子的吸附作用研究[學位論文]. 鄭州: 河南農業大學, 2008

    Wang H Q. Studies on Adsorption of the Rare Earth Ions by Phanerochaete Chrysosporium[Dissertation]. Zhengzhou: Henan Agricultural University, 2008
    [64]
    溫建康, 姚國成, 陳勃偉, 等. 溫度對浸礦微生物活性及銅浸出率的影響. 北京科技大學學報, 2009, 31(3):295 doi: 10.3321/j.issn:1001-053X.2009.03.005

    Wen J K, Yao G C, Chen B W, et al. Effect of temperature on the activity of mineral-bioleaching microorganisms and the bioleaching rate of copper. J Univ Sci Technol Beijing, 2009, 31(3): 295 doi: 10.3321/j.issn:1001-053X.2009.03.005
    [65]
    Fathollahzadeh H, Hackett M J, Khaleque H N, et al. Better together: Potential of co-culture microorganisms to enhance bioleaching of rare earth elements from monazite. Bioresour Technol Rep, 2018, 3: 109 doi: 10.1016/j.biteb.2018.07.003
    [66]
    Brandl H, Faramarzi M A. Microbe-metal-interactions for the biotechnological treatment of metal-containing solid waste. China Particuology, 2006, 4(2): 93 doi: 10.1016/S1672-2515(07)60244-9
    [67]
    Liu Y, Hou Z Q. A synthesis of mineralization styles with an integrated genetic model of carbonatite-syenite-hosted REE deposits in the Cenozoic Mianning-Dechang REE metallogenic belt, the eastern Tibetan Plateau, southwestern China. J Asian Earth Sci, 2017, 137: 35 doi: 10.1016/j.jseaes.2017.01.010
    [68]
    Shin D, Kim J, Kim B S, et al. Use of phosphate solubilizing bacteria to leach rare earth elements from monazite-bearing ore. Minerals, 2015, 5(2): 189 doi: 10.3390/min5020189
    [69]
    Binnemans K, Jones P T, Blanpain B, et al. Recycling of rare earths: a critical review. J Cleaner Prod, 2013, 51: 1 doi: 10.1016/j.jclepro.2012.12.037
    [70]
    Tkaczyk A H, Bartl A, Amato A, et al. Sustainability evaluation of essential critical raw materials: cobalt, niobium, tungsten and rare earth elements. J Phys D Appl Phys, 2018, 51(20): 203001 doi: 10.1088/1361-6463/aaba99
    [71]
    Hopfe S, Flemming K, Lehmann F, et al. Leaching of rare earth elements from fluorescent powder using the tea fungus Kombucha. Waste Manage, 2017, 62: 211 doi: 10.1016/j.wasman.2017.02.005
    [72]
    Marra A, Cesaro A, Rene E R, et al. Bioleaching of metals from WEEE shredding dust. J Environ Manage, 2018, 210: 180 doi: 10.1016/j.jenvman.2017.12.066
    [73]
    Reed D W, Fujita Y, Daubaras D L, et al. Bioleaching of rare earth elements from waste phosphors and cracking catalysts. Hydrometallurgy, 2016, 166: 34 doi: 10.1016/j.hydromet.2016.08.006
    [74]
    Klauber C, Grafe M, Power G. Bauxite residue issues: II. options for residue utilization. Hydrometallurgy, 2011, 108(1-2): 11 doi: 10.1016/j.hydromet.2011.02.007
    [75]
    尹升華, 王雷鳴, 吳愛祥, 等. 我國銅礦微生物浸出技術的研究進展. 工程科學學報, 2019, 41(2):143

    Yin S H, Wang L M, Wu A X, et al. Progress of research in copper bioleaching technology in China. Chin J Eng, 2019, 41(2): 143
    [76]
    Thompson V S, Gupta M, Jin H Y, et al. Techno-economic and life cycle analysis for bioleaching rare-earth elements from waste materials. ACS Sustainable Chem Eng, 2018, 6(2): 1602 doi: 10.1021/acssuschemeng.7b02771
    [77]
    Rodríguez H, Fraga R, Gonzalez T, et al. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil, 2006, 287(1-2): 15 doi: 10.1007/s11104-006-9056-9
    [78]
    Fathollahzadeh H, Kaczala F, Bhatnagar A, et al. Speciation of metals in contaminated sediments from Oskarshamn Harbor, Oskarshamn, Sweden. Environ Sci Pollut Res, 2013, 21(4): 2455
    [79]
    Chu K H. Improved fixed bed models for metal biosorption. Chem Eng J, 2004, 97(2-3): 233 doi: 10.1016/S1385-8947(03)00214-6
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article views (2562) PDF downloads(145) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频