Citation: | TAO Lei, HONG Tao, CHAO Xu. Drone identification and location tracking based on YOLOv3[J]. Chinese Journal of Engineering, 2020, 42(4): 463-468. doi: 10.13374/j.issn2095-9389.2019.09.10.002 |
[1] |
Dimitropoulos K, Grammalidis N, Gragopoulos I, et al. Detection, tracking and classification of vehicles and aircraft based on magnetic sensing technology. Int J Appl Math Comput Sci, 2006, 1: 195
|
[2] |
de Haag M U, Bartone C G, Braasch M S. Flight-test evaluation of small form-factor LiDAR and radar sensors for sUAS detect-and-avoid applications // 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC). Sacramento, 2016: 1
|
[3] |
Saqib M, Khan S D, Sharma N, et al. A study on detecting drones using deep convolutional neural networks // 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Lecce, 2017: 1
|
[4] |
Aker C, Kalkan S. Using deep networks for drone detection // 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Lecce, 2017: 1
|
[5] |
Ganti S R, Kim Y. Implementation of detection and tracking mechanism for small UAS // 2016 International Conference on Unmanned Aircraft Systems (ICUAS). Arlington, 2016: 1254
|
[6] |
Nam H, Han B. Learning multi-domain convolutional neural networks for visual tracking // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, 2016: 4293
|
[7] |
Zhang D, Maei H, Wang X, et al. Deep reinforcement learning for visual object tracking in videos[J/OL]. arXiv preprint (2017-04-10)[2019-09-10]. https://arxiv.org/abs/1701.08936
|
[8] |
Xi X, Yu Z, Zhan Z, et al. Multi-task cost-sensitive-convolutional neural network for car detection. IEEE Access, 2019, 7: 98061 doi: 10.1109/ACCESS.2019.2927866
|
[9] |
Wu Y W, Sui Y, Wang G H. Vision-based real-time aerial object localization and tracking for UAV sensing system. IEEE Access, 2017, 5: 23969 doi: 10.1109/ACCESS.2017.2764419
|
[10] |
Rozantsev A, Lepetit V, Fua P. Flying objects detection from a single moving camera // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, 2015: 4128
|
[11] |
Girshick R. Fast R-CNN // Proceedings of the IEEE International Conference on Computer Vision. Santiago, 2015: 1440
|
[12] |
Ren S, He K, Girshick R, et al. Faster r-cnn: towards real-time object detection with region proposal networks // Advances in Neural Information Processing Systems. Canada, 2015: 91
|
[13] |
Liu W, Anguelov D, Erhan D, et al. SSD: single shot multibox detector // European Conference on Computer Vision. Amsterdam, 2016: 21
|
[14] |
Redmon J, Farhadi A. Yolov3: an incremental improvement[J/OL]. arXiv preprint (2018-04-08)[2019-09-10]. https://arxiv.org/abs/1804.02767
|
[15] |
Redmon J, Farhadi A. YOLO9000: better, faster, stronger // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, 2017: 7263
|
[16] |
Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, 2016: 779
|
[17] |
Coluccia A, Fascista A, Schumann A, et al. Drone-vs-Bird detection challenge at IEEE AVSS2019// 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Taipei, 2019: 1
|
[18] |
Liu H, Wei Z Q, Chen Y T, et al. Drone detection based on an audio-assisted camera array // 2017 IEEE Third International Conference on Multimedia Big Data (BigMM). Laguna Hills, 2017: 402
|
[19] |
Mezei J, Fiaska V, Molnár A. Drone sound detection // 2015 16th IEEE International Symposium on Computational Intelligence and Informatics (CINTI). Budapest, 2015: 333
|
[20] |
Nguyen P, Ravindranatha M, Nguyen A, et al. Investigating cost-effective rf-based detection of drones // Proceedings of the 2nd Workshop on Micro Aerial Vehicle Networks, Systems, and Applications for Civilian Use. Singapore, 2016: 17
|
[21] |
Lin T Y, Maire M, Belongie S, et al. Microsoft coco: common objects in context // European Conference on Computer Vision. Zurich, 2014: 740
|
[22] |
Deng J, Dong W, Socher R, et al. Imagenet: a large-scale hierarchical image database // 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, 2009: 248
|
[23] |
Kingma D P, Ba J. Adam: a method for stochastic optimization[J/OL]. arXiv preprint (2017-01-30)[2019-09-10]. https://arxiv.org/abs/1412.6980
|