<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 1
Feb.  2020
Turn off MathJax
Article Contents
HU Bin, TU Xin, WANG Yu, LUO Hai-wen, MAO Xin-ping. Recent progress and future research prospects on the plastic instability of medium-Mn steels: a review[J]. Chinese Journal of Engineering, 2020, 42(1): 48-59. doi: 10.13374/j.issn2095-9389.2019.09.05.004
Citation: HU Bin, TU Xin, WANG Yu, LUO Hai-wen, MAO Xin-ping. Recent progress and future research prospects on the plastic instability of medium-Mn steels: a review[J]. Chinese Journal of Engineering, 2020, 42(1): 48-59. doi: 10.13374/j.issn2095-9389.2019.09.05.004

Recent progress and future research prospects on the plastic instability of medium-Mn steels: a review

doi: 10.13374/j.issn2095-9389.2019.09.05.004
More Information
  • Lightweight materials are desired for energy saving and emission reduction of automobiles. A promising material for automobile parts is advanced high strength steel (AHSS). A recently developed material called medium-Mn steel, with excellent mechanical properties, has attracted increasing attention as the third-generation AHSS for automotive processing. However, medium-Mn steel is disadvantaged by plastic instability during tensile tests. This plastic instability is usually associated with localized and propagative bands on the material surface, which cause an unexpected surface roughening effect and premature failure in the most unfavorable cases. Therefore, plastic instability has severely impeded the commercialization of medium-Mn steels. The phenomenon manifests as discontinuous yielding followed by a yielding plateau (the Lüders strain), along with flow stress serrations (the Portevin-Le Chatelier (PLC) effect). Both effects are influenced by the composition, annealing process, and microstructure (phase morphology and constituents) of the steel. Both effects are also correlated with the austenite-to-martensite transformation during deformation to a greater or lesser extent, which is rarely observed in metallic materials. Consequently, the mechanisms of both effects are complicated and explainable by diverse theories. This paper reviewed the current research results on the influences of various factors on the Lüders strain and PLC effect, and discussed their corresponding mechanisms. This paper particularly emphasized the limitations of the existing theoretical explanations and proposed future researches to elucidate the existing disputes. Based on the current research and our preliminary experiment, this paper finally suggested ways of eliminating the plastic instability of medium-Mn steel, while guaranteeing ultrahigh strength, and excellent ductility. These improvements will drive the future development of this field.

     

  • loading
  • [1]
    Xu H F, Zhao J, Cao W Q, et al. Heat treatment effects on the microstructure and mechanical properties of a medium manganese steel (0.2C-5Mn). Mater Sci Eng A, 2012, 532: 435 doi: 10.1016/j.msea.2011.11.009
    [2]
    Cao W Q, Wang C, Shi J, et al. Microstructure and mechanical properties of Fe?0.2C?5Mn steel processed by ART-annealing. Mater Sci Eng A, 2011, 528(22-23): 6661 doi: 10.1016/j.msea.2011.05.039
    [3]
    Shi J, Sun X J, Wang M Q, et al. Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite. Scripta Mater, 2010, 63(8): 815 doi: 10.1016/j.scriptamat.2010.06.023
    [4]
    Hu B, Luo H W, Yang F, et al. Recent progress in medium-Mn steels made with new designing strategies, a review. J Mater Sci Technol, 2017, 33(12): 1457 doi: 10.1016/j.jmst.2017.06.017
    [5]
    Lee S, De Cooman B C. Effect of the intercritical annealing temperature on the mechanical properties of 10 pct Mn multi-phase steel. Metall Mater Trans A, 2014, 45(11): 5009 doi: 10.1007/s11661-014-2449-0
    [6]
    He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels. Science, 2017, 357(6355): 1029 doi: 10.1126/science.aan0177
    [7]
    Wang X G, Wang L, Huang M X. Kinematic and thermal characteristics of Lüders and Portevin-Le Chatelier bands in a medium Mn transformation-induced plasticity steel. Acta Mater, 2017, 124: 17 doi: 10.1016/j.actamat.2016.10.069
    [8]
    Cottrell A H, Bilby B A. Dislocation theory of yielding and strain ageing of iron. Proc Phys Soc Sect A, 1949, 62(1): 49 doi: 10.1088/0370-1298/62/1/308
    [9]
    Van den Beukel A. Theory of the effect of dynamic strain aging on mechanical properties. Phys Status Solidi A, 1975, 30(1): 197 doi: 10.1002/pssa.2210300120
    [10]
    Wilson D V. Grain-size dependence of discontinuous yielding in strain-aged steels. Acta Metall, 1968, 16(5): 743 doi: 10.1016/0001-6160(68)90146-6
    [11]
    Varin R A, Mazurek B, Himbeault D. Discontinuous yielding in ultrafine-grained austenitic stainless steels. Mater Sci Eng, 1987, 94: 109 doi: 10.1016/0025-5416(87)90326-0
    [12]
    Akama D, Nakada N, Tsuchiyama T, et al. Discontinuous yielding induced by the addition of nickel to interstitial-free steel. Scripta Mater, 2014, 82: 13 doi: 10.1016/j.scriptamat.2014.03.012
    [13]
    Hahn G T. A model for yielding with special reference to the yield-point phenomena of iron and related bcc metals. Acta Metall, 1962, 10(8): 727 doi: 10.1016/0001-6160(62)90041-X
    [14]
    Johnston W G. Yield points and delay times in single crystals. J Appl Phys, 1962, 33(9): 2716 doi: 10.1063/1.1702538
    [15]
    Emadoddin E, Akbarzadeh A, Daneshi G H. Correlation between Luder strain and retained austenite in TRIP-assisted cold rolled steel sheets. Mater Sci Eng A, 2007, 447(1-2): 174 doi: 10.1016/j.msea.2006.10.046
    [16]
    Luo H W, Dong H, Huang M X. Effect of intercritical annealing on the Lüders strains of medium Mn transformation-induced plasticity steels. Mater Des, 2015, 83: 42 doi: 10.1016/j.matdes.2015.05.085
    [17]
    Hu B, He B B, Cheng G J, et al. Super-high-strength and formable medium Mn steel manufactured by warm rolling process. Acta Mater, 2019, 174: 131 doi: 10.1016/j.actamat.2019.05.043
    [18]
    Ryu J H, Kim J I, Kim H S, et al. Austenite stability and heterogeneous deformation in fine-grained transformation-induced plasticity-assisted steel. Scripta Mater, 2013, 68(12): 933 doi: 10.1016/j.scriptamat.2013.02.026
    [19]
    Ma J W, Lu Q, Sun L, et al. Two-step intercritical annealing to eliminate Lüders band in a strong and ductile medium Mn steel. Metall Mater Trans A, 2018, 49(10): 4404 doi: 10.1007/s11661-018-4791-0
    [20]
    Sun B H, Fazeli F, Scott C, et al. Microstructural characteristics and tensile behavior of medium manganese steels with different manganese additions. Mater Sci Eng A, 2018, 729: 496 doi: 10.1016/j.msea.2018.04.115
    [21]
    Zhang Y, Ding H. Ultrafine also can be ductile: on the essence of Lüders band elongation in ultrafine-grained medium manganese steel. Mater Sci Eng A, 2018, 733: 220 doi: 10.1016/j.msea.2018.07.052
    [22]
    Li Z C, Ding H, Misra R D K, et al. Deformation behavior in cold-rolled medium-manganese TRIP steel and effect of pre-strain on the Lüders bands. Mater Sci Eng A, 2017, 679: 230 doi: 10.1016/j.msea.2016.10.042
    [23]
    Cai Z H, Jing S Y, Li H Y, et al. The influence of microstructural characteristics on yield point elongation phenomenon in Fe?0.2C?11Mn?2Al steel. Mater Sci Eng A, 2019, 739: 17 doi: 10.1016/j.msea.2018.09.114
    [24]
    Wang X G, He B B, Liu C H, et al. Extraordinary Lüders?strain?rate in medium Mn steels. Materialia, 2019, 6: 100288 doi: 10.1016/j.mtla.2019.100288
    [25]
    Sun B H, Ma Y, Vanderesse N, et al. Macroscopic to nanoscopic in situ investigation on yielding mechanisms in ultrafine grained medium Mn steels: Role of the austenite?ferrite interface. Acta Mater, 2019, 178: 10 doi: 10.1016/j.actamat.2019.07.043
    [26]
    Hu B, Luo H W. A novel two-step intercritical annealing process to improve mechanical properties of medium Mn steel. Acta Mater, 2019, 176: 250 doi: 10.1016/j.actamat.2019.07.014
    [27]
    Hu B, Luo H W. Microstructures and mechanical properties of 7Mn steel manufactured by different rolling processes. Metals, 2017, 7(11): 464 doi: 10.3390/met7110464
    [28]
    Han J, Lee S J, Jung J G, et al. The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe?9Mn?0.05C steel. Acta Mater, 2014, 78: 369 doi: 10.1016/j.actamat.2014.07.005
    [29]
    Dutta A, Ponge D, Sandl?bes S, et al. Strain partitioning and strain localization in medium manganese steels measured by in situ microscopic digital image correlation. Materialia, 2019, 5: 100252 doi: 10.1016/j.mtla.2019.100252
    [30]
    Steineder K, Krizan D, Schneider R, et al. On the microstructural characteristics influencing the yielding behavior of ultra-fine grained medium-Mn steels. Acta Mater, 2017, 139: 39 doi: 10.1016/j.actamat.2017.07.056
    [31]
    Zhang M H, Li L F, Ding J, et al. Temperature-dependent micromechanical behavior of medium-Mn transformation-induced-plasticity steel studied by in situ synchrotron X-ray diffraction. Acta Mater, 2017, 141: 294 doi: 10.1016/j.actamat.2017.09.030
    [32]
    Wang X G, Huang M X. Temperature dependence of Lüders strain and its correlation with martensitic transformation in a medium Mn transformation-induced plasticity steel. J Iron Steel Res Int, 2017, 24(11): 1073 doi: 10.1016/S1006-706X(17)30156-5
    [33]
    Gonzalez B M, Marchi L A, da Fonseca E J, et al. Measurement of dynamic strain aging in pearlitic steels by tensile test. ISIJ Int, 2003, 43(3): 428 doi: 10.2355/isijinternational.43.428
    [34]
    Halim H, Wilkinson D S, Niewczas M. The Portevin-Le Chatelier (PLC) effect and shear band formation in an AA5754 alloy. Acta Mater, 2007, 55(12): 4151 doi: 10.1016/j.actamat.2007.03.007
    [35]
    Liang X, McDermid J R, Bouaziz O, et al. Microstructural evolution and strain hardening of Fe?24Mn and Fe?30Mn alloys during tensile deformation. Acta Mater, 2009, 57(13): 3978 doi: 10.1016/j.actamat.2009.05.003
    [36]
    Liang Z Y, Li Y Z, Huang M X. The respective hardening contributions of dislocations and twins to the flow stress of a twinning-induced plasticity steel. Scripta Mater, 2016, 112: 28 doi: 10.1016/j.scriptamat.2015.09.003
    [37]
    Lee S J, Kim J, Kane S N, et al. On the origin of dynamic strain aging in twinning-induced plasticity steels. Acta Mater, 2011, 59(17): 6809 doi: 10.1016/j.actamat.2011.07.040
    [38]
    Sun B H, Vanderesse N, Fazeli F, et al. Discontinuous strain-induced martensite transformation related to the Portevin-Le Chatelier effect in a medium manganese steel. Scripta Mater, 2017, 133: 9 doi: 10.1016/j.scriptamat.2017.01.022
    [39]
    Sun B H, Fazeli F, Scott C, et al. Microstructural characteristics and tensile behavior of medium manganese steels with different manganese additions. Mater Sci Eng A, 2018, 729: 496 doi: 10.1016/j.msea.2018.04.115
    [40]
    Yang F, Luo H W, Pu E X, et al. On the characteristics of Portevin-Le Chatelier bands in cold-rolled 7Mn steel showing transformation-induced plasticity. Int J Plast, 2018, 103: 188 doi: 10.1016/j.ijplas.2018.01.010
    [41]
    Grzegorczyk B, Koz?owska A, Morawiec M, et al. Effect of deformation temperature on the Portevin-Le Chatelier effect in medium-Mn steel. Metals, 2019, 9(1): 2
    [42]
    Wang X G, Wang L, Huang M X. Kinematic and thermal characteristics of Lüders and Portevin-Le Chatelier bands in a medium Mn transformation-induced plasticity steel. Acta Mater, 2017, 124: 17 doi: 10.1016/j.actamat.2016.10.069
    [43]
    Kim D W, Ryu W S, Hong J H, et al. Effect of nitrogen on the dynamic strain ageing behaviour of type 316L stainless steel. J Mater Sci, 1998, 33(3): 675 doi: 10.1023/A:1004381510474
    [44]
    Bracke L, Penning J, Akdut N. The influence of Cr and N additions on the mechanical properties of FeMnC steels. Metall Mater Trans A, 2007, 38(3): 520 doi: 10.1007/s11661-006-9084-3
    [45]
    Lee S, Kim J, Lee S J, et al. Effect of nitrogen on the critical strain for dynamic strain aging in high-manganese twinning-induced plasticity steel. Scripta Mater, 2011, 65(6): 528 doi: 10.1016/j.scriptamat.2011.06.017
    [46]
    Lee S, Kim J, Lee S J, et al. Effect of Cu addition on the mechanical behavior of austenitic twinning-induced plasticity steel. Scripta Mater, 2011, 65(12): 1073 doi: 10.1016/j.scriptamat.2011.09.019
    [47]
    Choi J H, Jo M C, Lee H, et al. Cu addition effects on TRIP to TWIP transition and tensile property improvement of ultra-high-strength austenitic high-Mn steels. Acta Mater, 2019, 166: 246 doi: 10.1016/j.actamat.2018.12.044
    [48]
    Shun T, Wan C M, Byrne J G. A study of work hardening in austenitic Fe?Mn?C and Fe?Mn?Al?C alloys. Acta Metall Mater, 1992, 40(12): 3407 doi: 10.1016/0956-7151(92)90054-I
    [49]
    Shun T S, Wan C M, Byrne J G. Serrated flow in austenitic Fe?Mn?C and Fe?Mn?Al?C alloys. Scripta Metall Mater, 1991, 25(8): 1769 doi: 10.1016/0956-716X(91)90302-H
    [50]
    He B B, Huang M X. Simultaneous increase of both strength and ductility of medium Mn transformation-induced plasticity steel by vanadium alloying. Metall Mater Trans A, 2018, 49(5): 1433 doi: 10.1007/s11661-018-4517-3
    [51]
    張偉. 高密度電脈沖下GH4169合金塑性變形為研究[學位論文]. 沈陽: 東北大學, 2010

    Zhang W. Deformation Behavior of GH4169 Superalloy under the High Current Density Electropulsing [Dissertation]. Shenyang: Northeastern University, 2010
    [52]
    Zhao Y G, Ma B D, Guo H C, et al. Electropulsing strengthened 2 GPa boron steel with good ductility. Mater Des, 2013, 43: 195 doi: 10.1016/j.matdes.2012.06.060
    [53]
    陳明江. 電脈沖處理對富銅納米相強化鋼組織結構及力學性能的影響[學位論文]. 哈爾濱: 哈爾濱工程大學, 2018

    Chen M J. Effect of Electropulsing Treatment on the Microstructure and Mechanical Properties of Cu-enriched Nanoscale Precipitate-Strengthened Steel [Dissertation]. Harbin: Harbin University of Technology, 2018
    [54]
    Zhu R F, Jiang Y B, Guan L, et al. Difference in recrystallization between electropulsing-treated and furnace-treated NiTi alloy. J Alloys Compd, 2016, 658: 548 doi: 10.1016/j.jallcom.2015.10.239
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(9)

    Article views (2162) PDF downloads(191) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频