Citation: | TONG He-jun, FU Dong-mei. Retinal feature quantization method based on a reference model[J]. Chinese Journal of Engineering, 2019, 41(9): 1222-1227. doi: 10.13374/j.issn2095-9389.2019.09.015 |
[1] |
Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography. Science, 1991, 254(5035): 1178 doi: 10.1126/science.1957169
|
[2] |
Virgili G, Menchini F, Casazza G, et al. Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy. Cochrane Database Syst Rev, 2015(1): CD008081 http://www.ncbi.nlm.nih.gov/pubmed/25564068
|
[3] |
Ouyang Y, Heussen F M, Hariri A, et al. Optical coherence tomography-based observation of the natural history of drusenoid lesion in eyes with dry age-related macular degeneration. Ophthalmology, 2013, 120(12): 2656 doi: 10.1016/j.ophtha.2013.05.029
|
[4] |
Andreoli M T, Lim J I. Optical coherence tomography retinal thickness and volume measurements in X-linked retinoschisis. Am J Ophthalmol, 2014, 158(3): 567 doi: 10.1016/j.ajo.2014.05.028
|
[5] |
Roh Y R, Park K H, Woo S J. Foveal thickness between stratus and spectralis optical coherence tomography in retinal diseases. Korean J Ophthalmol, 2013, 27(4): 268 doi: 10.3341/kjo.2013.27.4.268
|
[6] |
Liu Y Y, Chen M, Ishikawa H, et al. Automated macular pathology diagnosis in retinal OCT images using multi-scale spatial pyramid and local binary patterns in texture and shape encoding. Med Image Anal, 2011, 15(5): 748 doi: 10.1016/j.media.2011.06.005
|
[7] |
Liu Y Y, Ishikawa H, Chen M, et al. Computerized macular pathology diagnosis in spectral domain optical coherence tomography scans based on multiscale texture and shape features. Invest Ophthalmol Vis Sci, 2011, 52(11): 8316 doi: 10.1167/iovs.10-7012
|
[8] |
Koprowski R, Teper S, Wrobel Z, et al. Automatic analysis of selected choroidal diseases in OCT images of the eye fundus. BioMed Eng OnLine, 2013, 12: 117 doi: 10.1186/1475-925X-12-117
|
[9] |
Xu J, Ishikawa H, Wollstein G, et al. Three-dimensional spectral-domain optical coherence tomography data analysis for glaucoma detection. PLoS One, 2013, 8(2): e55476 doi: 10.1371/journal.pone.0055476
|
[10] |
Koprowski R, Rzendkowski M, Wrobel Z. Automatic method of analysis of OCT images in assessing the severity degree of glaucoma and the visual field loss. BioMed Eng OnLine, 2014, 13: 16 doi: 10.1186/1475-925X-13-16
|
[11] |
Chen H Y, Chen X J, Qiu Z Q, et al. Quantitative analysis of retinal layers' optical intensities on 3D optical coherence tomography for central retinal artery occlusion. Sci Rep, 2015, 5(10): 9269 http://pubmedcentralcanada.ca/pmcc/articles/PMC4363859/
|
[12] |
Hu Z H, Shi Y, Nandanan K, et al. Semiautomated segmentation and analysis of retinal layers in three-dimensional spectral-domain optical coherence tomography images of patients with atrophic age-related macular degeneration. Neurophotonics, 2017, 4(1): 011012 doi: 10.1117/1.NPh.4.1.011012
|
[13] |
Rashno A, Koozekanani D D, Drayna P M, et al. Fully automated segmentation of fluid/cyst regions in optical coherence tomography images with diabetic macular edema using neutrosophic sets and graph algorithms. IEEE Trans Biomed Eng, 2018, 65(5): 989 http://europepmc.org/abstract/MED/28783619
|
[14] |
Chiu S J, Allingham M J, Mettu P S, et al. Kernel regression based segmentation of optical coherence tomography images with diabetic macular edema. Biomed Opt Exp, 2015, 6(4): 1172 doi: 10.1364/BOE.6.001172
|
[15] |
Duan X R, Liang Y B, Friedman D S, et al. Normal macular thickness measurements using optical coherence tomography in healthy eyes of adult Chinese persons: the Handan Eye Study. Ophthalmology, 2010, 117(8): 1585 doi: 10.1016/j.ophtha.2009.12.036
|
[16] |
Shen L, Gao F, Xu X L, et al. Macular thickness in Chinese. Acta Ophthalmol, 2013, 91(1): e77 doi: 10.1111/j.1755-3768.2012.02428.x
|