Citation: | ZHENG Wen-hao, JIA Ying-min. Adaptive tracking control for omnidirectional mobile robots with full-state constraints and input saturation[J]. Chinese Journal of Engineering, 2019, 41(9): 1176-1186. doi: 10.13374/j.issn2095-9389.2019.09.009 |
[1] |
Kramer J, Scheutz M. Development environments for autonomous mobile robots: a survey. Auton Robot, 2007, 22(2): 101 doi: 10.1007/s10514-006-9013-8
|
[2] |
Watanabe K, Shiraishi Y, Tzafestas S G, et al. Feedback control of an omnidirectional autonomous platform for mobile service robots. J Intell Rob Syst, 1998, 22(3-4): 315 http://www.springerlink.com/content/t517772768520pn8/
|
[3] |
Al Mamun M A, Nasir M T, Khayyat A. Embedded system for motion control of an omnidirectional mobile robot. IEEE Access, 2018, 6: 6722 doi: 10.1109/ACCESS.2018.2794441
|
[4] |
Kalmár-Nagy T, D'Andrea R, Ganguly P. Near-optimal dynamic trajectory generation and control of an omnidirectional vehicle. Robot Auton Syst, 2004, 46(1): 47 doi: 10.1016/j.robot.2003.10.003
|
[5] |
Purwin O, D'Andrea R. Trajectory generation and control for four wheeled omnidirectional vehicles. Robot Auton Syst, 2006, 54(1): 13 doi: 10.1016/j.robot.2005.10.002
|
[6] |
Liu Y, Zhu J J, Williams Ⅱ R L, et al. Omni-directional mobile robot controller based on trajectory linearization. Robot Auton Syst, 2008, 56(5): 461 doi: 10.1016/j.robot.2007.08.007
|
[7] |
Indiveri G. Swedish wheeled omnidirectional mobile robots: kinematics analysis and control. IEEE Trans Rob, 2009, 25(1): 164 doi: 10.1109/TRO.2008.2010360
|
[8] |
Hashemi E, Jadidi M G, Jadidi N G. Model-based PI-fuzzy control of four-wheeled omni-directional mobile robots. Robot Auton Syst, 2011, 59(11): 930 doi: 10.1016/j.robot.2011.07.002
|
[9] |
Huang H C, Tsai C C. Adaptive trajectory tracking and stabilization for omnidirectional mobile robot with dynamic effect and uncertainties. IFAC Proc Vol, 2008, 41(2): 5383 doi: 10.3182/20080706-5-KR-1001.00907
|
[10] |
王明明, 朱瑩瑩, 張磊, 等. 麥克納姆輪驅動的移動機器人自適應滑模控制器設計. 西北工業大學學報, 2018, 36(4): 627 doi: 10.3969/j.issn.1000-2758.2018.04.004
Wang M M, Zhu Y Y, Zhang L, et al. An adaptive robust controller for a mobile robot driven by Mecanum wheels. J Northwest Polytech Univ, 2018, 36(4): 627 doi: 10.3969/j.issn.1000-2758.2018.04.004
|
[11] |
Alakshendra V, Chiddarwar S S. Adaptive robust control of Mecanum-wheeled mobile robot with uncertainties. Nonlinear Dyn, 2017, 87(4): 2147 doi: 10.1007/s11071-016-3179-1
|
[12] |
Xu D, Zhao D B, Yi J Q, et al. Trajectory tracking control of omnidirectional wheeled mobile manipulators: robust neural network-based sliding mode approach. IEEE Trans Syst Man Cybern Part B Cybern, 2009, 39(3): 788 doi: 10.1109/TSMCB.2008.2009464
|
[13] |
康升征, 吳洪濤. 全向移動機器人模糊自適應滑模控制方法研究. 機械設計與制造工程, 2017, 46(3): 70 doi: 10.3969/j.issn.2095-509X.2017.03.014
Kang S Z, Wu H T. Research on fuzzy adaptive sliding mode control of omni-directional mobile robot. Mach Des Manuf Eng, 2017, 46(3): 70 doi: 10.3969/j.issn.2095-509X.2017.03.014
|
[14] |
Tee K P, Ge S S, Tay E H. Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica, 2009, 45(4): 918 doi: 10.1016/j.automatica.2008.11.017
|
[15] |
Liu Y J, Li D J, Tong S C. Adaptive output feedback control for a class of nonlinear systems with full-state constraints. Int J Control, 2014, 87(2): 281 doi: 10.1080/00207179.2013.828854
|
[16] |
Liu Y J, Tong S C. Barrier Lyapunov Functions-based adaptive control for a class of nonlinear pure-feedback systems with full state constraints. Automatica, 2016, 64: 70 doi: 10.1016/j.automatica.2015.10.034
|
[17] |
Bai R. Neural network control-based adaptive design for a class of DC motor systems with the full state constraints. Neurocomputing, 2015, 168: 65 doi: 10.1016/j.neucom.2015.04.090
|
[18] |
Meng W C, Yang Q M, Sun Y X. Adaptive neural control of nonlinear MIMO systems with time-varying output constraints. IEEE Trans Neural Networks Learn Syst, 2015, 26(5): 1074 doi: 10.1109/TNNLS.2014.2333878
|
[19] |
Ding L, Li S, Liu Y J, et al. Adaptive neural network-based tracking control for full-state constrained wheeled mobile robotic system. IEEE Trans Syst Man Cybern Syst, 2017, 47(8): 2410 doi: 10.1109/TSMC.2017.2677472
|
[20] |
Wang C X, Wu Y Q. Finite-time tracking control for strict-feedback nonlinear systems with full state constraints. Int J Control, 2017, 46(7): 1
|
[21] |
Chen X H, Jia Y M, Matsuno F. Tracking control for differential-drive mobile robots with diamond-shaped input constraints. IEEE Trans Control Syst Technol, 2014, 22(5): 1999 doi: 10.1109/TCST.2013.2296900
|
[22] |
Liu C X, Gao J, Xu D M. Lyapunov-based model predictive control for tracking of nonholonomic mobile robots under input constraints. Int J Control Autom Syst, 2017, 15(5): 2313 doi: 10.1007/s12555-016-0350-x
|
[23] |
Chen M, Ge S S, Ren B B. Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints. Automatica, 2011, 47(3): 452 doi: 10.1016/j.automatica.2011.01.025
|
[24] |
Wen C Y, Zhou J, Liu Z T, et al. Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance. IEEE Trans Autom Control, 2011, 56(7): 1672 doi: 10.1109/TAC.2011.2122730
|
[25] |
Khalil H K. Nonlinear Systems. 3rd Ed. London: Prentice Hall Inc, 2002
|