<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 9
Sep.  2019
Turn off MathJax
Article Contents
GUO Zhi-chao, LIU Xuan, XUE Ji-lai, ZHANG Peng-ju. Effects of ultrasound on the microstructure of Al-7Si-Sc alloy prepared via molten salt electrolysis[J]. Chinese Journal of Engineering, 2019, 41(9): 1135-1141. doi: 10.13374/j.issn2095-9389.2019.09.004
Citation: GUO Zhi-chao, LIU Xuan, XUE Ji-lai, ZHANG Peng-ju. Effects of ultrasound on the microstructure of Al-7Si-Sc alloy prepared via molten salt electrolysis[J]. Chinese Journal of Engineering, 2019, 41(9): 1135-1141. doi: 10.13374/j.issn2095-9389.2019.09.004

Effects of ultrasound on the microstructure of Al-7Si-Sc alloy prepared via molten salt electrolysis

doi: 10.13374/j.issn2095-9389.2019.09.004
More Information
  • Corresponding author: XUE Ji-lai, E-mail: jx@ustb.edu.cn
  • Received Date: 2019-01-29
  • Publish Date: 2019-09-01
  • Al-Si alloys are widely used in modern industries, transportation, and other engineering applications. Processability and mechanical properties of Al-based alloys can be improved via the addition of scandium. Sc added to Al metal for fabricating Sc-containing Al alloys using molten salt electrolysis has been recently considered as promising technology. However, alloying elements, such as Sc and Si are often unevenly distributed in such Al-based alloys. In this study, Al-7Si-Sc ternary alloy was prepared via molten salt electrolysis aided with ultrasound to investigate the effects of ultrasound on the microstructure and distribution of the strengthening phase. Electrolysis was performed on molten salts of Na3AlF6-19%KF-29%AlF3-2%CaF2 at a temperature of 800℃ and current density of 1 A·cm2, in which Sc2O3 (99.99% purity) and Al-7Si alloy served as the raw material and cathodic metal, respectively. Ultrasound (20 kHz, 200 W) was introduced into the cathode metal from the cell bottom. Sc contents in the as-prepared alloy samples were determined using inductively coupled plasma atomic emission spectrometry (ICP-AES). Microstructures of the alloy samples were characterized using optical microscope and scanning electron microscope coupled with an energy dispersive X-ray analyzer. Results reveal that ultrasound can increase Sc content in the ternary alloy prepared via molten salt electrolysis and refine the eutectic silicon clusters and the ternary AlSi2Sc2 phase. Compared with the alloys made without ultrasound aid, the silicon cluster size decreases from approximately 500 to 200 μm (~60%) and the refined ternary phase of AlSi2Sc2 uniformly distributes in the metal matrix. Results also indicate that ultrasound can considerably optimize the microstructure of Al-7Si-Sc alloy prepared via molten salt electrolysis. This process can prevent problems such as the segregation of alloying elements and uneven microstructures observed when using the traditional alloy-making process.

     

  • loading
  • [1]
    王恩睿, 惠希東, 王建國, 等. 鑄造共晶鋁硅合金中析出相對斷裂行為的影響. 北京科技大學學報, 2011, 33(12): 1508 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201112012.htm

    Wang E R, Hui X D, Wang J G, et al. Effects of precipitates on the fracture behavior of cast eutectic Al-Si alloys. J Univ Sci Technol Beijing, 2011, 33(12): 1508 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201112012.htm
    [2]
    于小健. 稀土Y對A356合金微觀組織和性能的影響[學位論文]. 常州: 江蘇理工學院, 2015

    Yu X J. Effect of Rare Earth Y on Microstructure and Properties of A356 Aluminum Alloy [Dissertation]. Changzhou: Jiangsu University of Technology, 2015
    [3]
    梁紅玉, 張勇, 毛協民. Al-Si合金快速等軸凝固界面響應函數及組織選擇. 北京科技大學學報, 2009, 31(7): 871 doi: 10.3321/j.issn:1001-053X.2009.07.012

    Liang H Y, Zhang Y, Mao X M. Interface response function and microstructure selection for Al-Si alloys during rapid equiaxed solidification. J Univ Sci Technol Beijing, 2009, 31(7): 871 doi: 10.3321/j.issn:1001-053X.2009.07.012
    [4]
    章愛生, 龔遠興. Y和Sc對A356合金組織與性能的影響. 特種鑄造及有色合金, 2014, 34(10): 1032 https://www.cnki.com.cn/Article/CJFDTOTAL-TZZZ201410009.htm

    Zhang A S, Gong Y X. Effects of Y and Sc on microstructure and properties of A356 alloy. Spec Cast Nonferrous Alloys, 2014, 34(10): 1032 https://www.cnki.com.cn/Article/CJFDTOTAL-TZZZ201410009.htm
    [5]
    Chanyathunyaroj K, Patakham U, Kou S, et al. Microstructural evolution of iron-rich intermetallic compounds in scandium modified Al-7Si-0.3Mg alloys. J Alloys Compd, 2017, 692: 865 doi: 10.1016/j.jallcom.2016.09.132
    [6]
    Muhammad A, Xu C, W X J, et al. High strength aluminum cast alloy: A Sc modification of a standard Al-Si-Mg cast alloy. Mater Sci Eng A, 2014, 604: 122 doi: 10.1016/j.msea.2014.03.005
    [7]
    Prukkanon W, Srisukhumbowornchai N, Limmaneevichitr C. Modification of hypoeutectic Al-Si alloys with scandium. J Alloys Compd, 2009, 477(1-2): 454 doi: 10.1016/j.jallcom.2008.10.016
    [8]
    Patakham U, Kajornchaiyakul J, Limmaneevichitr C. Modification mechanism of eutectic silicon in Al-6Si-0.3Mg alloy with scandium. J Alloys Compd, 2013, 575: 273 doi: 10.1016/j.jallcom.2013.05.139
    [9]
    Riva S, Yusenko K V, Lavery N P, et al. The scandium effect in multicomponent alloys. Int Mater Rev, 2016, 61(3): 203 doi: 10.1080/09506608.2015.1137692
    [10]
    Qian Y, Xue J L, Wang Z J, et al. Mechanical properties evaluation of Zr addition in L12-Al3 (Sc1-xZrx) using first-principles calculation. JOM, 2016, 68(5): 1293 doi: 10.1007/s11837-016-1880-7
    [11]
    Belov N A, Naumova E A, Alabin A N, et al. Effect of scandium on structure and hardening of Al-Ca eutectic alloys. J Alloys Compd, 2015, 646: 741 doi: 10.1016/j.jallcom.2015.05.155
    [12]
    Patakham U, Kajornchaiyakul J, Limmaneevichitr C. Grain refinement mechanism in an Al-Si-Mg alloy with scandium. J Alloys Compd, 2012, 542: 177 doi: 10.1016/j.jallcom.2012.07.018
    [13]
    Liu X, Guo Z C, Xue J L, et al. Effects of synergetic ultrasound on the Sc yield and primary Al3Sc in the Al-Sc alloy prepared by the molten salts electrolysis. Ultrason Sonochem, 2019, 52: 33 doi: 10.1016/j.ultsonch.2018.09.009
    [14]
    李亮星, 王濤勝, 黃茜琳, 等. 熔鹽電解法制備鋁鈧中間合金研究進展. 材料導報, 2018, 32(21): 3768 doi: 10.11896/j.issn.1005-023X.2018.21.013

    Li L X, Wang T S, Huang X L, et al. Research progress on the preparation of Al-Sc master alloy by molten salt electrolysis method. Mater Rev, 2018, 32(21): 3768 doi: 10.11896/j.issn.1005-023X.2018.21.013
    [15]
    田忠良, 楊樹, 賴延清, 等. 熔鹽電解法制備鋁-鈧中間合金的研究進展. 礦產保護與利用, 2013(5): 55 https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH201305014.htm

    Tian Z L, Yang S, Lai Y Q, et al. Progress on preparing Al-Sc master alloy by molten salt electrolysis. Conserv Utiliz Miner Resour, 2013(5): 55 https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH201305014.htm
    [16]
    李廣宇, 楊少華, 李繼東, 等. 熔鹽電解法制備鋁鈧合金的研究. 輕金屬, 2007(5): 54 doi: 10.3969/j.issn.1002-1752.2007.05.015

    Li G Y, Yang S H, Li J D, et al. Preparation of Al-Sc alloys by molten salt electrolysis. Light Metals, 2007(5): 54 doi: 10.3969/j.issn.1002-1752.2007.05.015
    [17]
    Harata M, Yasuda K, Yakushiji H, et al. Electrochemical production of Al-Sc alloy in CaCl2-Sc2O3 molten salt. J Alloys Compd, 2009, 474(1-2): 124 doi: 10.1016/j.jallcom.2008.06.110
    [18]
    Royset J, Ryum N. Scandium in aluminium alloys. Int Mater Rev, 2005, 50(1): 19 doi: 10.1179/174328005X14311
    [19]
    韓昭勇. 熔鹽電解法制備鋁鈧合金及其微觀結構分析[學位論文]. 鄭州: 鄭州大學, 2011

    Han Z Y. Al-Sc Alloy Prepared by Molten Salt Electrolyzing and the Microstructure Analysis [Dissertation]. Zhengzhou: Zhengzhou University, 2011
    [20]
    何兵, 覃銘, 梁柳青, 等. Sc含量對Al-Si鑄造合金組織與力學性能的影響. 鑄造技術, 2017, 38(10): 2360 https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201710010.htm

    He B, Qin M, Liang L Q, et al. Effect of Sc content on microstructure and mechanical properties of Al-Si casting alloy. Foundry Technol, 2017, 38(10): 2360 https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201710010.htm
    [21]
    Zhang L, Eskin D G, Katgerman L. Influence of ultrasonic melt treatment on the formation of primary intermetallics and related grain refinement in aluminum alloys. J Mater Sci, 2011, 46(15): 5252 doi: 10.1007/s10853-011-5463-2
    [22]
    Eskin G I, Eskin D G. Effects of ultrasonic (cavitation) melt processing on the structure refinement and property improvement of cast and worked aluminum alloys. Mater Sci Forum, 2002, 396-402: 77 doi: 10.4028/www.scientific.net/MSF.396-402.77
    [23]
    徐婷, 張立華, 李瑞卿, 等. 鋁合金大鑄錠超聲半連鑄多場耦合的數值模擬與實驗研究. 工程科學學報, 2016, 38(9): 1270 doi: 10.13374/j.issn2095-9389.2016.09.011

    Xu T, Zhang L H, Li R Q, et al. Numerical simulation and experimental study of multi-field coupling for semi-continuous casting of large-scale aluminum ingots with ultrasonic treatment. Chin J Eng, 2016, 38(9): 1270 doi: 10.13374/j.issn2095-9389.2016.09.011
    [24]
    Lin C, Wu S S, Lu S L, et al. Microstructure and mechanical properties of rheo-diecast hypereutectic Al-Si alloy with 2%Fe assisted with ultrasonic vibration process. J Alloys Compd, 2013, 568: 42 doi: 10.1016/j.jallcom.2013.03.089
    [25]
    Eskin G I, Eskin D G. Some control mechanisms of spatial solidification in light alloys. Z Metallkd, 2004, 95(8): 682 doi: 10.3139/146.018006
    [26]
    Eskin G I. Improvement of the structure and properties of ingots and worked aluminum alloy semifinished products by melt ultrasonic treatment in a cavitation regime. Metallurgist, 2010, 54(7-8): 505 doi: 10.1007/s11015-010-9331-0
    [27]
    鐘貞濤, 李瑞卿, 李曉謙, 等. 超聲處理對2219大規格鋁錠微觀組織與宏觀偏析的影響. 工程科學學報, 2017, 39(9): 1347 doi: 10.13374/j.issn2095-9389.2017.09.007

    Zhong Z T, Li R Q, Li X Q, et al. Effect of ultrasonication on the microstructure and macrosegregation of a large 2219 aluminum ingot. Chin J Eng, 2017, 39(9): 1347 doi: 10.13374/j.issn2095-9389.2017.09.007
    [28]
    陳鼎欣, 李曉謙, 黎正華, 等. 超聲鑄造7050鋁合金的微觀組織和宏觀偏析規律. 北京科技大學學報, 2012, 34(6): 666 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201206010.htm

    Chen D X, Li X Q, Li Z H, et al. Microstructure and macro-segregation law of ultrasonic cast 7050 aluminum alloy ingots. J Univ Sci Technol Beijing, 2012, 34(6): 666 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201206010.htm
    [29]
    王坤, 張立華, 黎正華, 等. 超聲外場對SiCp/7085復合材料顆粒微觀團聚與界面結合的作用機理. 工程科學學報, 2017, 39(2): 238 doi: 10.13374/j.issn2095-9389.2017.02.011

    Wang K, Zhang L H, Li Z H, et al. Mechanism of ultrasonic field on the particle micro-agglomeration and interfacial bonding of SiCp/7085 composites. Chin J Eng, 2017, 39(2): 238 doi: 10.13374/j.issn2095-9389.2017.02.011
    [30]
    王瑩, 李曉謙, 李瑞卿, 等. 大直徑鋁錠熱頂鑄造中超聲施振深度的細晶機制工程科學學報, 2019, 41(1): 96 doi: 10.13374/j.issn2095-9389.2019.01.010

    Wang Y, Li X Q, Li R Q, et al. Fine grain mechanism of ultrasonic vibration depth in large diameter aluminum ingot hot-top casting. Chin J Eng, 2019, 41(1): 96 doi: 10.13374/j.issn2095-9389.2019.01.010
    [31]
    袁敏娟. Na3AlF6-K3AlF6-AlF3體系低溫鋁電解質研究[學位論文]. 北京: 北京有色金屬研究總院, 2012

    Yuan M J. Study on Na3AlF6-K3AlF6-AlF3 Low Temperature Aluminum Electrolyte System [Dissertation]. Beijing: General Research Institute for Nonferrous Metals, 2012
    [32]
    Murray J L, McAlister A J. The Al-Si (aluminum-silicon) system. Bull Alloy Phase Diagrams, 1984, 5(1): 74 doi: 10.1007/BF02868729
    [33]
    Yang J, Zhang J, Dai Y B, et al. The migration behavior of the fourth period transition metals in liquid Al: an ab initio molecular dynamics study. Comput Mater Sci, 2017, 130: 183 doi: 10.1016/j.commatsci.2017.01.001
    [34]
    錢義. 熔鹽電解法制備鋁鈧鋯合金的基礎研究[學位論文]. 北京: 北京科技大學, 2017

    Qian Y. Fundamental Studies on Preparation of Al-Sc-Zr Alloys by Electrolysis in Molten Salts [Dissertation]. Beijing: University of Science and Technology Beijing, 2017
    [35]
    Eskin D G. Ultrasonic processing of molten and solidifying aluminium alloys: overview and outlook. Mater Sci Technol, 2017, 33(6): 636 doi: 10.1080/02670836.2016.1162415
    [36]
    Lauterborn W, Ohl C D. Cavitation bubble dynamics. Ultrason Sonochem, 1997, 4(2): 65 doi: 10.1016/S1350-4177(97)00009-6
    [37]
    Eskin G I. Broad prospects for commercial application of the ultrasonic (cavitation) melt treatment of light alloys. Ultrason Sonochem, 2001, 8(3): 319 doi: 10.1016/S1350-4177(00)00074-2
    [38]
    Liu X, Xue J L, Guo Z C, et al. Segregation behaviors of Sc and unique primary Al3Sc in Al-Sc alloys prepared by molten salt electrolysis. J Mater Sci Technol, 2019, 35(7): 1422 doi: 10.1016/j.jmst.2019.02.002
    [39]
    Zhang W D, Liu Y, Yang J, et al. Effects of Sc content on the microstructure of as-cast Al-7wt. % Si alloys. Mater Charact, 2012, 66: 104 doi: 10.1016/j.matchar.2011.11.005
    [40]
    Zhang Z T, Li J, Yue H Y, et al. Microstructure evolution of A356 alloy under compound field. J Alloys Compd, 2009, 484(1-2): 458 doi: 10.1016/j.jallcom.2009.04.125
    [41]
    余昭福, 陳濤, 劉政. 超聲處理Al-Si合金及其等溫組織形貌分形特征. 有色金屬科學與工程, 2017, 8(4): 54 https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201704010.htm

    Yu Z F, Chen T, Liu Z. Al-Si alloy microstructure under ultrasonic condition and fractal characteristics of its isothermal microstructure. Nonferrous Met Sci Eng, 2017, 8(4): 54 https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201704010.htm
    [42]
    Zhang F, Qin A N, Liu S H, et al. Phase equilibria and solidification characteristics of the Al-Sc-Si alloys. J Mater Sci, 2016, 51(3): 1644 doi: 10.1007/s10853-015-9487-x
    [43]
    Pandee P, Gourlay C M, Belyakov S A, et al. AlSi2Sc2 intermetallic formation in Al-7Si-0.3Mg-xSc alloys and their effects on as-cast properties. J Alloys Compd, 2018, 731: 1159 doi: 10.1016/j.jallcom.2017.10.125
    [44]
    Okamoto H. Supplemental literature review of binary phase diagrams: Ag-Ni, Al-Cu, Al-Sc, C-Cr, Cr-Ir, Cu-Sc, Eu-Pb, H-V, Hf-Sn, Lu-Pb, Sb-Yb, and Sn-Y. J Phase Equilib Diffus, 2013, 34(6): 493 doi: 10.1007/s11669-013-0256-8
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article views (1076) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频