<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 7
Jul.  2020
Turn off MathJax
Article Contents
SONG Ren-bo, HUO Wei-feng, ZHOU Nai-peng, LI Jia-jia, ZHANG Zhe-rui, WANG Yong-jin. Research progress and prospect of Fe?Mn?Al?C medium Mn steels[J]. Chinese Journal of Engineering, 2020, 42(7): 814-828. doi: 10.13374/j.issn2095-9389.2019.08.27.002
Citation: SONG Ren-bo, HUO Wei-feng, ZHOU Nai-peng, LI Jia-jia, ZHANG Zhe-rui, WANG Yong-jin. Research progress and prospect of Fe?Mn?Al?C medium Mn steels[J]. Chinese Journal of Engineering, 2020, 42(7): 814-828. doi: 10.13374/j.issn2095-9389.2019.08.27.002

Research progress and prospect of Fe?Mn?Al?C medium Mn steels

doi: 10.13374/j.issn2095-9389.2019.08.27.002
More Information
  • As vehicle ownership increases, the trend lightweight design puts energy consumption and environmental concerns on automotive steel. The research concept of the third generation of automotive steel currently under development is to combine the addition of lightweight elements with “light” and improve plasticization with “thin”. Some of the research hotspots are Fe?Mn?Al?C medium Mn steels as the main component of the third generation of automotive steel. This paper summarized the research literature of Fe?Mn?Al?C steels in recent years in different countries, and discussed the advantages of Fe?Mn?Al?C medium Mn steels in terms of production cost and mechanical properties; the mechanical properties of that is not worse or even better than the second generation of advanced high-strength automotive steel such as TWIP steel can be obtained under the premise of cost savings. The literature was reviewed from the aspects of composition design, process design, microstructure characteristics, deformation and fracture mechanism, and the effect on the efficiency of chemical composition, process route, and microstructure on performance was summarized. It proposed a reasonable range of chemical elements especially Mn and Al, and compared the focus of the two different process routes (Intercritical annealing and quenching + Tempering). The deformation mechanism of medium Mn steel, especially transformation-induced plasticity (TRIP) effect, and the stacking fault energy and austenite stability were identified, in particular, the factors affecting the austenite stability such as grains size, grain morphology and chemical elements were described, and the three-stage work hardening behavior that often occurs in Fe?Mn?Al?C steels was explained. Furthermore, the literature proposed suggestions on regulating the organization of Fe?Mn?Al?C steels by studying the fracture mechanism of materials. Typically the initiation of cleavage cracks is linked to the process of coarse δ-ferrite and κ* phase. Finally, this paper summarized the controversial issues in Fe?Mn?Al?C medium Mn steels research and prospected the future development trend, to provide a reference for the follow-up research and actual production of medium Mn steels.

     

  • loading
  • [1]
    唐荻, 米振莉, 陳雨來. 國外新型汽車用鋼的技術要求及研究開發現狀. 鋼鐵, 2005, 40(6):1 doi: 10.3321/j.issn:0449-749X.2005.06.001

    Tang D, Mi Z L, Chen Y L. Technology and research and development of advanced automobile steel abroad. Iron Steel, 2005, 40(6): 1 doi: 10.3321/j.issn:0449-749X.2005.06.001
    [2]
    康永林. 汽車輕量化先進高強鋼與節能減排. 鋼鐵, 2008, 43(6):1 doi: 10.3321/j.issn:0449-749X.2008.06.001

    Kang Y L. Lightweight vehicle, advanced high strength steel and energy-saving and emission reduction. Iron Steel, 2008, 43(6): 1 doi: 10.3321/j.issn:0449-749X.2008.06.001
    [3]
    羅振軒, 榮建, 楊可, 等. 高強度汽車用鋼發展與第3代汽車高強度鋼的研究. 汽車工藝與材料, 2015(4):1 doi: 10.3969/j.issn.1003-8817.2015.04.001

    Luo Z X, Rong J, Yang K, et al. Development of high strength automotive steel and research on 3rd generation automotive high strength steel. Automobile Technol Mater, 2015(4): 1 doi: 10.3969/j.issn.1003-8817.2015.04.001
    [4]
    Lee Y K, Han J. Current opinion in medium manganese steel. Mater Sci Technol, 2015, 31(7): 843 doi: 10.1179/1743284714Y.0000000722
    [5]
    Li J J, Song R B, Li X, et al. Microstructural evolution and tensile properties of 70 GPa·% grade strong and ductile hot-rolled 6Mn steel treated by intercritical annealing. Mater Sci Eng A, 2019, 745: 212 doi: 10.1016/j.msea.2018.12.110
    [6]
    Jo M C, Lee H, Zargaran A, et al. Exceptional combination of ultra-high strength and excellent ductility by inevitably generated Mn-segregation in austenitic steel. Mater Sci Eng A, 2018, 737: 69 doi: 10.1016/j.msea.2018.09.024
    [7]
    Yang F Q, Song R B, Li Y P, et al. Tensile deformation of low density duplex Fe–Mn–Al–C steel. Mater Des, 2015, 76: 32 doi: 10.1016/j.matdes.2015.03.043
    [8]
    Zhang L F, Song R B, Zhao C, et al. Work hardening behavior involving the substructural evolution of an austenite-ferrite Fe–Mn–Al–C steel. Mater Sci Eng A, 2015, 640: 225 doi: 10.1016/j.msea.2015.05.108
    [9]
    Zhao C, Song R B, Zhang L F, et al. Effect of annealing temperature on the microstructure and tensile properties of Fe–10Mn–10Al–0.7C low-density steel. Mater Des, 2016, 91: 348 doi: 10.1016/j.matdes.2015.11.115
    [10]
    Li Z C, Ding H, Misra R D K, et al. Microstructure-mechanical property relationship and austenite stability in medium-Mn TRIP steels: The effect of austenite-reverted transformation and quenching-tempering treatments. Mater Sci Eng A, 2017, 682: 211 doi: 10.1016/j.msea.2016.11.048
    [11]
    徐娟萍, 付豪, 王正, 等. 中錳鋼的研究進展與前景. 工程科學學報, 2019, 41(5):557

    Xu J P, Fu H, Wang Z, et al. Research progress and prospect of medium manganese steel. Chin J Eng, 2019, 41(5): 557
    [12]
    Da Silva A K, Leyson G, Kuzmina M, et al. Confined chemical and structural states at dislocations in Fe-9wt% Mn steels: a correlative TEM-atom probe study combined with multiscale modelling. Acta Mater, 2017, 124: 305 doi: 10.1016/j.actamat.2016.11.013
    [13]
    Han J, Da Silva A K, Ponge D, et al. The effects of prior austenite grain boundaries and microstructural morphology on the impact toughness of intercritically annealed medium Mn steel. Acta Mater, 2017, 122: 199 doi: 10.1016/j.actamat.2016.09.048
    [14]
    Kuzmina M, Herbig M, Ponge D, et al. Linear complexions: confined chemical and structural states at dislocations. Science, 2015, 349(6252): 1080 doi: 10.1126/science.aab2633
    [15]
    Frommeyer G, Drewes E J, Engl B. Physical and mechanical properties of iron-aluminium-(Mn, Si) lightweight steels. Rev Met Paris, 2000, 97(10): 1245 doi: 10.1051/metal:2000110
    [16]
    Chu C M, Huang H, Kao P W, et al. Effect of alloying chemistry on the lattice constant of austenitic Fe–MnAl–C alloys. Scripta Metall Mater, 1994, 30(4): 505 doi: 10.1016/0956-716X(94)90611-4
    [17]
    Lehnhoff G R, Findley K O, De Cooman B C. The influence of silicon and aluminum alloying on the lattice parameter and stacking fault energy of austenitic steel. Scripta Mater, 2014, 92: 19 doi: 10.1016/j.scriptamat.2014.07.019
    [18]
    Frommeyer G, Brux U, Neumann P. Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes. ISIJ Int, 2013, 43(3): 438
    [19]
    Zhang F C, Fu R D, Qiu L, et al. Microstructure and property of nitrogen-alloyed high manganese austenitic steel under high strain rate tension. Mater Sci Eng A, 2008, 492(1-2): 255 doi: 10.1016/j.msea.2008.03.026
    [20]
    Cai Z H, Cai B, Ding H, et al. Microstructure and deformation behavior of the hot-rolled medium manganese steels with varying aluminum-content. Mater Sci Eng A, 2016, 676: 263 doi: 10.1016/j.msea.2016.08.119
    [21]
    Park S J, Hwang B, Lee K H, et al. Microstructure and tensile behavior of duplex low-density steel containing 5mass% aluminum. Scripta Mater, 2013, 68(6): 365 doi: 10.1016/j.scriptamat.2012.09.030
    [22]
    Cai M H, Zhu W J, Stanford N, et al. Dependence of deformation behavior on grain size and strain rate in an ultrahigh strength-ductile Mn-based TRIP alloy. Mater Sci Eng A, 2016, 653: 35 doi: 10.1016/j.msea.2015.11.103
    [23]
    Cai Z H, Ding H, Xue X, et al. Significance of control of austenite stability and three-stage work-hardening behavior of an ultrahigh strength-high ductility combination transformation-induced plasticity steel. Scripta Mater, 2013, 68(11): 865 doi: 10.1016/j.scriptamat.2013.02.010
    [24]
    Cai Z H, Ding H, Xue X, et al. Microstructural evolution and mechanical properties of hot-rolled 11% manganese TRIP steel. Mater Sci Eng A, 2013, 560: 388 doi: 10.1016/j.msea.2012.09.083
    [25]
    Lee C Y, Jeong J, Han J, et al. Coupled strengthening in a medium manganese lightweight steel with an inhomogeneously grained structure of austenite. Acta Mater, 2015, 84: 1 doi: 10.1016/j.actamat.2014.10.032
    [26]
    Cai Z H, Ding H, Kamoutsi H, et al. Interplay between deformation behavior and mechanical properties of intercritically annealed and tempered medium-manganese transformation-induced plasticity steel. Mater Sci Eng A, 2016, 654: 359 doi: 10.1016/j.msea.2015.12.057
    [27]
    Lee S, De Connman B C. Tensile behavior of intercritically annealed ultra-fine grained 8% Mn multi-phase steel. Steel Res Int, 2015, 86(10): 1170 doi: 10.1002/srin.201500038
    [28]
    Li Z C, Ding H, Cai Z H. Mechanical properties and austenite stability in hot-rolled 0.2C–1.6/3.2Al–6Mn–Fe TRIP steel. Mater Sci Eng A, 2015, 639: 559 doi: 10.1016/j.msea.2015.05.061
    [29]
    Li Z C, Ding H, Misra R D K, et al. Deformation behavior in cold-rolled medium-manganese TRIP steel and effect of pre-strain on the Lüders bands. Mater Sci Eng A, 2017, 679: 230 doi: 10.1016/j.msea.2016.10.042
    [30]
    Zhao X M, Shen Y F, Qiu L N, et al. Effects of intercritical annealing temperature on mechanical properties of Fe–7.9Mn–0.14Si–0.05Al–0.07C steel. Materials, 2014, 7(12): 7891 doi: 10.3390/ma7127891
    [31]
    Cai Z H, Ding H, Misra R D K, et al. Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content. Acta Mater, 2015, 84: 229 doi: 10.1016/j.actamat.2014.10.052
    [32]
    Cai M H, Li Z, Chao Q, et al. A novel Mo and Nb microalloyed medium Mn TRIP steel with maximal ultimate strength and moderate ductility. Metall Mater Trans A, 2014, 45(12): 5624 doi: 10.1007/s11661-014-2504-x
    [33]
    Xu Y B, Hu Z P, Zou Y, et al. Effect of two-step intercritical annealing on microstructure and mechanical properties of hot-rolled medium manganese TRIP steel containing δ-ferrite. Mater Sci Eng A, 2017, 688: 40 doi: 10.1016/j.msea.2017.01.063
    [34]
    Sun B H, Vanderesse N, Fazeli F, et al. Discontinuous strain-induced martensite transformation related to the Portevin-Le Chatelier effect in a medium manganese steel. Scripta Mater, 2017, 133: 9 doi: 10.1016/j.scriptamat.2017.01.022
    [35]
    Shao C W, Hui W J, Zhang Y J, et al. Microstructure and mechanical properties of hot-rolled medium-Mn steel containing 3% aluminum. Mater Sci Eng A, 2017, 682: 45 doi: 10.1016/j.msea.2016.11.036
    [36]
    Lee S, Lee K, De Cooman B C. Observation of the TWIP +TRIP plasticity-enhancement mechanism in Al-added 6 wt pct medium Mn steel. Metall Mater Trans A, 2015, 46(6): 2356 doi: 10.1007/s11661-015-2854-z
    [37]
    He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels. Science, 2017, 357(6355): 1029 doi: 10.1126/science.aan0177
    [38]
    Wang M M, Tasan C C, Ponge D, et al. Nanolaminate transformation-induced plasticity-twinning-induced plasticity steel with dynamic strain partitioning and enhanced damage resistance. Acta Mater, 2015, 85: 216 doi: 10.1016/j.actamat.2014.11.010
    [39]
    Zhou N P, Song R B, Li X, et al. Dependence of austenite stability and deformation behavior on tempering time in an ultrahigh strength medium Mn TRIP steel. Mater Sci Eng A, 2018, 738: 153 doi: 10.1016/j.msea.2018.09.098
    [40]
    Li X, Song R B, Zhou N P, et al. An ultrahigh strength and enhanced ductility cold-rolled medium-Mn steel treated by intercritical annealing. Scripta Mater, 2018, 154: 30 doi: 10.1016/j.scriptamat.2018.05.016
    [41]
    Li X, Song R B, Zhou N P, et al. Microstructure and tensile behavior of Fe–8Mn–6Al–0.2C low density steel. Mater Sci Eng A, 2018, 709: 97 doi: 10.1016/j.msea.2017.10.039
    [42]
    Chin K G, Kang C Y, Shin S Y, et al. Effects of Al addition on deformation and fracture mechanisms in two high manganese TWIP steels. Mater Sci Eng A, 2011, 528(6): 2922 doi: 10.1016/j.msea.2010.12.085
    [43]
    Hong S, Shin S Y, Kim H S, et al. Effects of aluminum addition on tensile and cup forming properties of three twinning induced plasticity steels. Metall Mater Trans A, 2012, 43(6): 1870 doi: 10.1007/s11661-011-1007-2
    [44]
    Dieudonné T, Marchetti L, Wery M, et al. Role of copper and aluminum on the corrosion behavior of austenitic Fe–Mn–C TWIP steels in aqueous solutions and the related hydrogen absorption. Corros Sci, 2014, 83: 234 doi: 10.1016/j.corsci.2014.02.018
    [45]
    Chun Y S, Park K T, Lee C S. Delayed static failure of twinning-induced plasticity steels. Scripta Mater, 2012, 66(12): 960 doi: 10.1016/j.scriptamat.2012.02.038
    [46]
    Heo Y U, Suh D W, Lee H C. Fabrication of an ultrafine-grained structure by a compositional pinning technique. Acta Mater, 2014, 77: 236 doi: 10.1016/j.actamat.2014.05.057
    [47]
    Li J J, Song R B, Li X, et al. Coupling nano-carbide strengthening with transformation induced plasticity effect to achieve over 1.5 GPa strength with 30% ductility in cold-rolled medium-Mn steel. Vacuum, 2019, 167: 223 doi: 10.1016/j.vacuum.2019.06.015
    [48]
    Xu Y B, Zou Y, Hu Z P, et al. Correlation between deformation behavior and austenite characteristics in a Mn–Al type TRIP steel. Mater Sci Eng A, 2017, 698: 126 doi: 10.1016/j.msea.2017.05.058
    [49]
    Bartlett L N, Van Aken D C, Medvedeva J, et al. An atom probe study of Kappa carbide precipitation and the effect of silicon addition. Metall Mater Trans A, 2014, 45(5): 2421 doi: 10.1007/s11661-014-2187-3
    [50]
    Heo Y U, Song Y Y, Park S J, et al. Influence of silicon in low density Fe–C–Mn–Al steel. Metall Mater Trans A, 2012, 43(6): 1731 doi: 10.1007/s11661-012-1149-x
    [51]
    Kuzmina M, Ponge D, Raabe D. Grain boundary segregation engineering and austenite reversion turn embrittlement into toughness: example of a 9 wt.% medium Mn steel. Acta Mater, 2015, 86: 182 doi: 10.1016/j.actamat.2014.12.021
    [52]
    Lee D, Kim J K, Lee S, et al. Microstructures and mechanical properties of Ti and Mo micro-alloyed medium Mn steel. Mater Sci Eng A, 2017, 706: 1 doi: 10.1016/j.msea.2017.08.110
    [53]
    Lee S, Kang S H, Nam J H, et al. Effect of tempering on the microstructure and tensile properties of a martensitic medium-Mn lightweight steel. Metall Mater Trans A, 2019, 50(6): 2655 doi: 10.1007/s11661-019-05190-4
    [54]
    Shin S Y, Lee H, Han S Y, et al. Correlation of microstructure and cracking phenomenon occurring during hot rolling of lightweight steel plates. Metall Mater Trans A, 2010, 41(1): 138 doi: 10.1007/s11661-009-0081-1
    [55]
    Han S Y, Shin S Y, Lee H J, et al. Effects of annealing temperature on microstructure and tensile properties in ferritic lightweight steels. Metall Mater Trans A, 2012, 43(3): 843 doi: 10.1007/s11661-011-0942-2
    [56]
    Sohn S S, Lee B J, Lee S, et al. Effects of aluminum content on cracking phenomenon occurring during cold rolling of three ferrite-based lightweight steel. Acta Mater, 2013, 61(15): 5626 doi: 10.1016/j.actamat.2013.06.004
    [57]
    Sohn S S, Lee B J, Kwak J H, et al. Effects of annealing treatment prior to cold rolling on the edge cracking phenomenon of ferritic lightweight steel. Metall Mater Trans A, 2014, 45(9): 3844 doi: 10.1007/s11661-014-2332-z
    [58]
    Sohn S S, Lee B J, Lee S, et al. Microstructural analysis of cracking phenomenon occurring during cold rolling of (0.1~ 0.7)C–3Mn–5Al lightweight steels. Met Mater Int, 2015, 21(1): 43 doi: 10.1007/s12540-015-1006-8
    [59]
    Xu R C, He Y L, Jiang H, et al. Microstructures and mechanical properties of ferrite-based lightweight steel with different compositions. J Iron Steel Res Int, 2017, 24(7): 737 doi: 10.1016/S1006-706X(17)30111-5
    [60]
    Sohn S S, Lee B J, Lee S, et al. Effect of annealing temperature on microstructural modification and tensile properties in 0.35C–3.5Mn–5.8Al lightweight steel. Acta Mater, 2013, 61(13): 5050 doi: 10.1016/j.actamat.2013.04.038
    [61]
    Song H, Lee S G, Sohn S S, et al. Effect of strain-induced age hardening on yield strength improvement in ferrite-austenite duplex lightweight steels. Metall Mater Trans A, 2016, 47(11): 5372 doi: 10.1007/s11661-016-3706-1
    [62]
    Sohn S S, Choi K, Kwak J H, et al. Novel ferrite-austenite duplex lightweight steel with 77% ductility by transformation induced plasticity and twinning induced plasticity mechanisms. Acta Mater, 2014, 78: 181 doi: 10.1016/j.actamat.2014.06.059
    [63]
    Seo C H, Kwon K H, Choi K, et al. Deformation behavior of ferrite-austenite duplex lightweight Fe–Mn–Al–C steel. Scripta Mater, 2012, 66(8): 519 doi: 10.1016/j.scriptamat.2011.12.026
    [64]
    Sohn S S, Song H, Kim J G, et al. Effects of annealing treatment prior to cold rolling on delayed fracture properties in ferrite-austenite duplex lightweight steels. Metall Mater Trans A, 2016, 47(2): 706 doi: 10.1007/s11661-015-3187-7
    [65]
    Sohn S S, Lee S, Lee B J, et al. Microstructural developments and tensile properties of lean Fe–Mn–Al–C lightweight steels. JOM, 2014, 66(9): 1857 doi: 10.1007/s11837-014-1128-3
    [66]
    Park J, Jo M C, Jeong H J, et al. Interpretation of dynamic tensile behavior by austenite stability in ferrite-austenite duplex lightweight steels. Sci Rep, 2017, 7: 15726 doi: 10.1038/s41598-017-15991-5
    [67]
    Sohn S S, Song H, Kwak J H, et al. Dramatic improvement of strain hardening and ductility to 95% in highly-deformable high-strength duplex lightweight steels. Sci Rep, 2017, 7: 1927 doi: 10.1038/s41598-017-02183-4
    [68]
    Song H, Sohn S S, Kwak J H, et al. Effect of austenite stability on microstructural evolution and tensile properties in intercritically annealed medium-Mn lightweight steels. Metall Mater Trans A, 2016, 47(6): 2674 doi: 10.1007/s11661-016-3433-7
    [69]
    Lee S, Shin S, Kwon M, et al. Tensile properties of medium Mn steel with a bimodal UFG α+γ and Coarse δ-Ferrite microstructure. Metall Mater Trans A, 2017, 48(4): 1678
    [70]
    Jeong J, Lee C Y, Park I J, et al. Isothermal precipitation behavior of κ-carbide in the Fe–9Mn–6Al–0.15C lightweight steel with a multiphase microstructure. J Alloys Compd, 2013, 574: 299 doi: 10.1016/j.jallcom.2013.05.138
    [71]
    Lee S, Jeong J, Lee Y K. Precipitation and dissolution behavior of κ-carbide during continuous heating in Fe–9.3Mn–5.6Al–0.16C lightweight steel. J Alloys Compd, 2015, 648: 149 doi: 10.1016/j.jallcom.2015.06.048
    [72]
    Chen S P, Rana R, Haldar A, et al. Current state of Fe–Mn–Al–C low density steels. Prog Mater Sci, 2017, 89: 345 doi: 10.1016/j.pmatsci.2017.05.002
    [73]
    Palm M, Inden G. Experimental determination of phase equilibria in the Fe–Al–C system. Intermetallics, 1995, 3(6): 443 doi: 10.1016/0966-9795(95)00003-H
    [74]
    Kimura Y, Handa K, Hayashi K, et al. Microstructure control and ductility improvement of the two-phase γ-Fe/κ-(Fe, Mn)3AlC alloys in the Fe–Mn–Al–C quaternary system. Intermetallics, 2004, 12(6): 607 doi: 10.1016/j.intermet.2004.03.010
    [75]
    Huang H, Gan D, Kao P W. Effect of alloying additions on the κ phase precipitation in austenitic Fe–Mn–Al–C alloys. Scripta Metall Mater, 1994, 30(4): 499 doi: 10.1016/0956-716X(94)90610-6
    [76]
    Li M C, Chang H, Kao P W, et al. The effect of Mn and Al contents on the solvus of κ phase in austenitic Fe–Mn–Al–C alloys. Mater Chem Phys, 1999, 59(1): 96 doi: 10.1016/S0254-0584(99)00026-7
    [77]
    Ishida K, Ohtani H, Satoh N, et al. Phase Equilibria in Fe–Mn–Al–C Alloys. ISIJ Int, 1990, 30(8): 680 doi: 10.2355/isijinternational.30.680
    [78]
    Chin K G, Lee K J, Kwak J H, et al. Thermodynamic calculation on the stability of (Fe, Mn)3AlC carbide in high aluminum steels. J Alloys Compd, 2010, 505(1): 217 doi: 10.1016/j.jallcom.2010.06.032
    [79]
    Bale C W, Belisle E, Chartrand P, et al. FactSage thermochemical software and databases-recent developments. Calphad, 2009, 33(2): 295 doi: 10.1016/j.calphad.2008.09.009
    [80]
    Allain S, Chateau J P, Bouaziz O, et al. Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloy. Mater Sci Eng A, 2004, 387-389: 158 doi: 10.1016/j.msea.2004.01.059
    [81]
    Lee S, Estrin Y, De Cooman B C. Effect of the strain rate on the TRIP–TWIP transition in austenitic Fe–12 pct Mn–0.6 pct C TWIP steel. Metall Mater Trans A, 2014, 45(2): 717 doi: 10.1007/s11661-013-2028-9
    [82]
    Pierce D T, Jiménez J A, Bentley J, et al. The influence of manganese content on the stacking fault and austenite/ε-martensite interfacial energies in Fe–Mn–(Al–Si) steels investigated by experiment and theory. Acta Mater, 2014, 68: 238 doi: 10.1016/j.actamat.2014.01.001
    [83]
    Lee Y K, Choi C. Driving force for γ→ε martensitic transformation and stacking fault energy of γ in Fe–Mn binary system. Metall Mater Trans A, 2000, 31(2): 355 doi: 10.1007/s11661-000-0271-3
    [84]
    Zambrano O A. Stacking fault energy maps of Fe–Mn–Al–C steels: effect of temperature, grain size, and variations in compositions. J Eng Mater Technol, 2016, 138(4): 041010 doi: 10.1115/1.4033632
    [85]
    Dumay A, Chateau J P, Allain S, et al. Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe–Mn–C steel. Mater Sci Eng A, 2008, 483-484: 184 doi: 10.1016/j.msea.2006.12.170
    [86]
    龍彩霞. Fe–20Mn–2.6Al–2.6Si TRIP/TWIP鋼的力學性能和微觀組織研究[學位論文]. 長沙: 湖南大學, 2012

    Long C X. Mechanical Properties and Microstructure of Fe–20Mn–2.6Al–2.6Si TRIP/TWIP Steel[Dissertation]. Changsha: Hunan University, 2012
    [87]
    Haidemenopoulos G N, Vasilakos A N. On the thermodynamic stability of retained austenite in 4340 steel. J Alloys Compd, 1997, 247(1-2): 128 doi: 10.1016/S0925-8388(96)02574-1
    [88]
    Timokhina I B, Hodgson P D, Pereloma E V. Effect of microstructure on the stability of retained austenite in transformation-induced-plasticity steels. Metall Mater Trans A, 2004, 35(8): 2331 doi: 10.1007/s11661-006-0213-9
    [89]
    Yang H S, Bhadeshia H K D H. Austenite grain size and the martensite-start temperature. Scripta Mater, 2009, 60(7): 493 doi: 10.1016/j.scriptamat.2008.11.043
    [90]
    Haidemenopoulos G N, Vasilakos A N. Modelling of austenite stability in low-alloy triple-phase steels. Steel Res, 1996, 67(11): 513 doi: 10.1002/srin.199605529
    [91]
    Zhou S, Zhang K, Wang Y, et al. High strength-elongation product of Nb-microalloyed low-carbon steel by a novel quenching-partitioning-tempering process. Mater Sci Eng A, 2011, 528(27): 8006 doi: 10.1016/j.msea.2011.07.008
    [92]
    Mi Z L, Tang D, Jiang H T, et al. Effects of annealing temperature on the microstructure and properties of the 25Mn–3Si–3Al TWIP steel. Int J Miner Metall Mater, 2009, 16(2): 154 doi: 10.1016/S1674-4799(09)60026-1
    [93]
    胡超, 楊鋼, 聶學青, 等. TWIP效應分析. 鋼鐵, 2010, 45(8):70

    Hu C, Yang G, Nie X Q, et al. Analysis of TWIP effect. Iron Steel, 2010, 45(8): 70
    [94]
    Choi H, Lee S, Lee J, et al. Characterization of fracture in medium Mn steel. Mater Sci Eng A, 2017, 687: 200 doi: 10.1016/j.msea.2017.01.055
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article views (3101) PDF downloads(251) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频