<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 8
Aug.  2020
Turn off MathJax
Article Contents
WU Shun-chuan, SUN Wei, CHENG Zi-qiao. Acoustic emission characteristics of Brazilian test for low-porosity sandstone under different load conditions[J]. Chinese Journal of Engineering, 2020, 42(8): 988-998. doi: 10.13374/j.issn2095-9389.2019.08.12.004
Citation: WU Shun-chuan, SUN Wei, CHENG Zi-qiao. Acoustic emission characteristics of Brazilian test for low-porosity sandstone under different load conditions[J]. Chinese Journal of Engineering, 2020, 42(8): 988-998. doi: 10.13374/j.issn2095-9389.2019.08.12.004

Acoustic emission characteristics of Brazilian test for low-porosity sandstone under different load conditions

doi: 10.13374/j.issn2095-9389.2019.08.12.004
More Information
  • In view of the influence of the load contact conditions on Brazilian test results, the acoustic emission (AE) monitoring system was used to conduct a Brazilian test of hard and brittle low-porosity sandstone under linear/non-linear load contact conditions. The standard Brazilian discs with a diameter of 50 mm and a thickness of 25 mm were instrumented with a three-dimensional sensor array containing eight Nano30 sensors. All the discs were equipped with identical three-dimensional sensor arrays. At the same load rate, the Brazilian discs were quasi-statically loaded under both linear/non-linear loads. The Richter 8 acquisition system continuously recorded waveform signals from eight channels from load application to brittle failure. Under the linear/non-linear load conditions, 1131 and 931 AE events were successfully located by a P-wave automatic picking and collapsing grid search algorithm. Under the linear/non-linear load condition, the crack initiation points were both away from the disc center. For non-central crack initiation, the tensile strength test may underestimate the true value. A pole density analysis of the planes under nonlinear load conditions shows that the local distortion of the fracture is greater than that under linear load. The evolution of the 3D damage to the disc shows that the load area of the disc significantly affects the cumulative time of damage, amount of energy liberation and stability of the crack propagation. The moment tensor decomposition was performed on the effective AE events, and the isotropic (ISO) component, the pure double-coupled (DC) and the compensated linear vector dipole (CLVD) component frequency percentage were obtained. The classification method was applied to quantitatively analyze the focal mechanism. The results show that the Brazilian test is not sensitive to the load contact conditions, and the focal mechanism of both cases can be interpreted as the initiation, propagation, and penetration of the tensile and shear microcracks approximately along the load direction.

     

  • loading
  • [1]
    Akazawa T. New test method for evaluating internal stress due to compression of concrete (the splitting tension test) (part1). <italic>J Jpn Soc Civil Eng</italic>, 1943, 29: 777
    [2]
    Xu X L, Wu S C, Gao Y T, et al. Effects of micro-structure and micro-parameters on brazilian tensile strength using flat-joint model. <italic>Rock Mech Rock Eng</italic>, 2016, 49(9): 1
    [3]
    ASTM. D3967-16 Standard Test Method for Splitting Tensile Strength of Intact Rock Core Specimens. West Conshohocken: ASTM International, 2016
    [4]
    IS RM. Suggested methods for determining tensile strength of rock materials. <italic>Int J Rock Mech Min Sci Geomech Abstr</italic>, 1978, 15(3): 99 doi: 10.1016/0148-9062(78)90003-7
    [5]
    中華人民共和國電力工業部. GB/T 50266-99工程巖體試驗方法標準. 北京: 中國計劃出版社, 1999

    Ministry of Power Industry, People's Republic of China. GB/T 50266-99 Standard for Tests Method of Engineering Rock Massas. Beijing: China Planning Press, 1999
    [6]
    長江水利委員會長江科學院. SL264—2001水利水電工程巖石試驗規程. 北京: 中國水利水電出版社, 2001

    Changjiang River Scientific Research Institute of Changjiang Water Resources Commission. SL264—2001 Specifications for Rock Tests in Water Conservancy and Hydroelectric Engineering. Beijing: China Water and Power Press, 2001
    [7]
    Fairhurst C. On the validity of the ‘Brazilian’ test for brittle materials. <italic>Int J Rock Mech Min Sci Geomech Abstr</italic>, 1964, 1(4): 535 doi: 10.1016/0148-9062(64)90060-9
    [8]
    Erarslan N, Williams D J. Experimental, numerical and analytical studies on tensile strength of rocks. <italic>Int J Rock Mech Min Sci</italic>, 2012, 49: 21 doi: 10.1016/j.ijrmms.2011.11.007
    [9]
    Hudson J A, Brown E T, Rummel F. The controlled failure of rock discs and rings loaded in diametral compression. <italic>Int J Rock Mech Min Sci</italic>, 1972, 9(2): 241 doi: 10.1016/0148-9062(72)90025-3
    [10]
    Lanaro F, Sato T, Stephansson O. Microcrack modelling of Brazilian tensile tests with the boundary element method. <italic>Int J Rock Mech Min Sci</italic>, 2009, 46(3): 450 doi: 10.1016/j.ijrmms.2008.11.007
    [11]
    Markides C F, Kourkoulis S K. The stress field in a standardized Brazilian disc: the influence of the loading type acting on the actual contact length. <italic>Rock Mech Rock Eng</italic>, 2012, 45(2): 145 doi: 10.1007/s00603-011-0201-2
    [12]
    Garcia-Fernandez C C, Gonzalez-Nicieza C, Alvarez-Fernandez M I, et al. Analytical and experimental study of failure onset during a Brazilian test. <italic>Int J Rock Mech Min Sci</italic>, 2018, 103: 254 doi: 10.1016/j.ijrmms.2018.01.045
    [13]
    King M S, Pettitt W S, Haycox J R, et al. Acoustic emissions associated with the formation of fracture sets in sandstone under polyaxial stress conditions. <italic>Geophys Prospect</italic>, 2012, 60: 93 doi: 10.1111/j.1365-2478.2011.00959.x
    [14]
    Chow T, Hutchins D A, Falls S D, et al. Ultrasonic attenuation tomography in disks under load//IEEE Symposium on Ultrasonics. Honolulu, 1990
    [15]
    Wang Y S, Deng J H, Li L R, et al. Micro-failure analysis of direct and flat loading Brazilian tensile tests. <italic>Rock Mech Rock Eng</italic>, 2019, 52(11): 4175 doi: 10.1007/s00603-019-01877-7
    [16]
    吳順川, 郭沛, 張詩淮, 等. 基于巴西劈裂試驗的花崗巖熱損傷研究. 巖石力學與工程學報, 2018, 37(增刊 2): 3805

    Wu S C, Guo P, Zhang S H, et al. Study on thermal damage of granite based on Brazilian splitting test. Chin J Rock Mech Eng, 2018, 37(Suppl 2): 3805
    [17]
    劉希靈, 劉周, 李夕兵, 等. 單軸壓縮與劈裂荷載下灰巖聲發射b值特性研究. 巖土力學, 2019, 40(增刊 1): 267

    Liu X L, Liu Z, Li X B, et al. Acoustic emission b-values of limestone under uniaxial compression and Brazilian splitting loads. Rock Soil Mech, 2019, 40(Suppl 1): 267
    [18]
    Falls S D. Ultrasonic Imaging and Acoustic Emission Studies of Microcrack Development in Lac du Bonnet Granite[Dissertation]. Canada: Queen's University at Kingston, 1993
    [19]
    Zhang S H, Wu S C, Zhang G, et al. Three-dimensional evolution of damage in sandstone Brazilian discs by the concurrent use of active and passive ultrasonic techniques. <italic>Acta Geotech</italic>, 2020, 15(2): 393 doi: 10.1007/s11440-018-0737-3
    [20]
    任會蘭, 寧建國, 宋水舟, 等. 基于聲發射矩張量分析混凝土破壞的裂紋運動. 力學學報, 2019, 51(6):1830 doi: 10.6052/0459-1879-19-170

    Ren H L, Ning J G, Song S Z, et al. Investigation on crack growth in concrete by moment tensor analysis of acoustic emission. <italic>Chin J Theoret Appl Mech</italic>, 2019, 51(6): 1830 doi: 10.6052/0459-1879-19-170
    [21]
    張樹文, 鮮學福, 周軍平, 等. 基于巴西劈裂試驗的頁巖聲發射與能量分布特征研究. 煤炭學報, 2017, 42(增刊 2): 346

    Zhang S W, Xian X F, Zhou J P, et al. Acoustic emission characteristics and the energy distribution of the shale in Brazilian splitting testing. J China Coal Soc, 2017, 42(Suppl 2): 346
    [22]
    Zhang S H, Wu S C, Chu C Q, et al. Acoustic emission associated with self-sustaining failure in low-porosity sandstone under uniaxial compression. <italic>Rock Mech Rock Eng</italic>, 2019, 52(7): 2067 doi: 10.1007/s00603-018-1686-8
    [23]
    張詩淮. 硬脆性砂巖強度與變形特性研究[學位論文]. 北京: 北京科技大學, 2019

    Zhang S H. Study on Strength and Deformability of Hard Brittle Sandstone[Dissertation]. Beijing: University of Science and Technology Beijing, 2019
    [24]
    Fehler M, House L, Kaieda H. Determining planes along which earthquakes occur: method and application to earthquakes accompanying hydraulic fracturing. <italic>J Geophys Res Solid Earth</italic>, 1987, 92(B9): 9407 doi: 10.1029/JB092iB09p09407
    [25]
    Gutenberg G, Richter C F. Seismicity of the earth and associated phenomena. <italic>J Geophys Res</italic>, 1950, 55: 97 doi: 10.1029/JZ055i001p00097
    [26]
    Knopoff L, Randall M J. The compensated linear-vector dipole: a possible mechanism for deep earthquakes. <italic>J Geophys Res</italic>, 1970, 75(26): 4957 doi: 10.1029/JB075i026p04957
    [27]
    Finck F, Kurz J H, Grosse C U, et al. Advances in moment tensor inversion for civil engineering//International Symposium on Non-Destructive Testing in Civil Engineering, 2003
    [28]
    Ohtsu M. Simplified moment tensor analysis and unified decomposition of acoustic emission source: application to in situ hydrofracturing test. <italic>J Geophys Res Solid Earth</italic>, 1991, 96(B4): 6211 doi: 10.1029/90JB02689
    [29]
    Zhang Q, Zhang X P. The crack nature analysis of primary and secondary cracks: a numerical study based on moment tensors. <italic>Eng Fract Mech</italic>, 2019, 210: 70 doi: 10.1016/j.engfracmech.2018.05.006
    [30]
    Vavry?uk V, Kühn D. Moment tensor inversion of waveforms: a two-step time-frequency approach. <italic>Geophys J Int</italic>, 2012, 190(3): 1761 doi: 10.1111/j.1365-246X.2012.05592.x
    [31]
    Dai F, Jiang P, Xu N W, et al. Focal mechanism determination for microseismic events and its application to the left bank slope of the Baihetan hydropower station in China. <italic>Environ Earth Sci</italic>, 2018, 77(7): 268 doi: 10.1007/s12665-018-7443-1
    [32]
    喻勇. 質疑巖石巴西圓盤拉伸強度試驗. 巖石力學與工程學報, 2005, 24(7):1150 doi: 10.3321/j.issn:1000-6915.2005.07.011

    Yu Y. Questioning the validity of the Brazilian test for determining tensile strength of rocks. <italic>Chin J Rock Mech Eng</italic>, 2005, 24(7): 1150 doi: 10.3321/j.issn:1000-6915.2005.07.011
    [33]
    Li D Y, Wong L N Y. The Brazilian disc test for rock mechanics applications: review and new insights. <italic>Rock Mech Rock Eng</italic>, 2013, 46(2): 269 doi: 10.1007/s00603-012-0257-7
    [34]
    Komurlu E, Kesimal A. Evaluation of indirect tensile strength of rocks using different types of jaws. <italic>Rock Mech Rock Eng</italic>, 2015, 48(4): 1723 doi: 10.1007/s00603-014-0644-3
    [35]
    Erarslan N, Liang Z Z, Williams D J. Experimental and numerical studies on determination of indirect tensile strength of rocks. <italic>Rock Mech Rock Eng</italic>, 2012, 45(5): 739
    [36]
    郭翔, 王學濱, 白雪元, 等. 加載方式及抗拉強度對巴西圓盤試驗影響的連續?非連續方法數值模擬. 巖土力學, 2017, 38(1):214

    Guo X, Wang X B, Bai X Y, et al. Numerical simulation of effects of loading types and tensile strengths on Brazilian disk test by use of a continuum-discontinuum method. <italic>Rock Soil Mech</italic>, 2017, 38(1): 214
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views (2180) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频