Citation: | XIONG Jia-shuai, HUANG Jin-feng, XIE Guo-liang, YU Jia-bin, ZHANG Cheng, SHAO Lei, WANG Ya-yu, LI Hong-ying, HE Guang-yu. Effect of electroplating Cr coating on combustion characteristics of TC4 titanium alloy[J]. Chinese Journal of Engineering, 2020, 42(8): 1007-1017. doi: 10.13374/j.issn2095-9389.2019.08.10.001 |
[1] |
馮秋元, 郭佳林, 李蒙, 等. 鈦合金電鍍鉻研究現狀及應用. 材料保護, 2018, 51(10):109
Feng Q Y, Guo J L, Li M, et al. Research status and application of electroplating chromium in titanium alloy. <italic>Mater Prot</italic>, 2018, 51(10): 109
|
[2] |
Mi G B, Huang X, Cao J X, et al. Frictional ignition of Ti40 fireproof titanium alloys for aero-engine in oxygen-containing media. <italic>Trans Nonferrous Met Soc China</italic>, 2013, 23(8): 2270 doi: 10.1016/S1003-6326(13)62728-4
|
[3] |
Holmes T D, Guilmette R A, Cheng Y S, et al. Aerosol sampling system for collection of capstone depleted uranium particles in a high-energy environment. <italic>Health Phys</italic>, 2009, 96(3): 221 doi: 10.1097/01.HP.0000290610.53663.57
|
[4] |
Girodin D, Dudragne G, Courbon J, et al. Statistical analysis of nonmetallic inclusions for the estimation of rolling contact fatigue range and quality control of bearing steel. <italic>J ASTM Int</italic>, 2006, 3(7): 1
|
[5] |
Plagens O, Lynn D, Castillo M, et al. Combustion products of bulk aluminum rods burning in high-pressure oxygen // <italic>Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres</italic>: 13<italic>th Volume</italic>. <italic>West Conshohocken</italic>, 2012: 233
|
[6] |
Chiffoleau G, Newton B, Holroyd N, et al. Mechanical impact of aluminum alloy gas cylinder pressurized with oxygen. <italic>J ASTM Int</italic>, 2006, 3(5): 1
|
[7] |
Hirsch D, Motto S, Peyton G, et al. Proficiency testing for evaluating aerospace materials test anomalies. <italic>J ASTM Int</italic>, 2006, 3(5): 1
|
[8] |
Benz F J, Stoltzfus J M. Ignition of metals and alloys in gaseous oxygen by frictional heating // Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres: Second Volume. Washington D C, 1986: 38
|
[9] |
弭光寶, 黃旭, 曹京霞, 等. 航空發動機鈦火試驗技術研究新進展. 航空材料學報, 2016, 36(3):20 doi: 10.11868/j.issn.1005-5053.2016.3.004
Mi G B, Huang X, Cao J X, et al. Experimental technique of titanium fire in aero-engine. <italic>J Aeron Mater</italic>, 2016, 36(3): 20 doi: 10.11868/j.issn.1005-5053.2016.3.004
|
[10] |
Chen Y N, Yang W Q, Bo A, et al. Underlying burning resistant mechanisms for titanium alloy. <italic>Mater Des</italic>, 2018, 156: 588 doi: 10.1016/j.matdes.2018.07.025
|
[11] |
Chen Y N, Huo Y Z, Song X D, et al. Burn-resistant behavior and mechanism of Ti14 alloy. <italic>Int J Miner Metall Mater</italic>, 2016, 23(2): 215 doi: 10.1007/s12613-016-1229-9
|
[12] |
弭光寶, 黃旭, 曹京霞, 等. 摩擦點火Ti–V–Cr阻燃鈦合金燃燒產物的組織特征. 物理學報, 2016, 65(5):056103 doi: 10.7498/aps.65.056103
Mi G B, Huang X, Cao J X, et al. Microstructure characteristics of burning products of Ti–V–Cr fireproof titanium alloy by frictional ignition. <italic>Acta Phys Sinica</italic>, 2016, 65(5): 056103 doi: 10.7498/aps.65.056103
|
[13] |
弭光寶, 黃旭, 曹京霞, 等. Ti–V–Cr系阻燃鈦合金的抗點燃性能及其理論分析. 金屬學報, 2014, 50(5):575
Mi G B, Huang X, Cao J X, et al. Ignition resistance performance and its theoretical analysis of Ti–V–Cr type fireproof titanium alloys. <italic>Acta Metall Sin</italic>, 2014, 50(5): 575
|
[14] |
歐陽佩旋, 弭光寶, 李培杰, 等. NiCrAl/YSZ/NiCrAl-B.e復合涂層對α+β型高溫鈦合金燃燒產物的影響. 材料工程, 2019, 47(5):43 doi: 10.11868/j.issn.1001-4381.2018.000977
Ouyang P X, Mi G B, Li P J, et al. Effect of NiCrAl/YSZ/NiCrAl-B.e composite coating on combustion products of high-temperature α+β titanium alloys. <italic>J Mater Eng</italic>, 2019, 47(5): 43 doi: 10.11868/j.issn.1001-4381.2018.000977
|
[15] |
Zhang P Z, Xu Z, Zhang G H, et al. Surface plasma chromized burn-resistant titanium alloy. <italic>Surf Coat Technol</italic>, 2007, 201(9-11): 4884 doi: 10.1016/j.surfcoat.2006.07.078
|
[16] |
張樂, 于月光, 任先京, 等. 鈦合金基體上阻燃涂層的研究進展. 鈦工業進展, 2008, 25(6):6 doi: 10.3969/j.issn.1009-9964.2008.06.003
Zhang L, Yu Y G, Ren X J, et al. Research progress of sustained combustion coatings on titanium substrates. <italic>Titanium Ind Prog</italic>, 2008, 25(6): 6 doi: 10.3969/j.issn.1009-9964.2008.06.003
|
[17] |
郭初陽, 郭喜軍, 王永紅, 等. 鈦合金零件鍍鉻工藝及控制研究. 新技術新工藝, 2015(10):96 doi: 10.3969/j.issn.1003-5311.2015.10.028
Guo C Y, Guo X J, Wang Y H, et al. Process and control research of titanium alloy parts chrome plating. <italic>New Technol New Process</italic>, 2015(10): 96 doi: 10.3969/j.issn.1003-5311.2015.10.028
|
[18] |
楊雕, 陳志堅, 劉朋科, 等. 某迫擊炮身管壽命分析及預測. 火炮發射與控制學報, 2017, 38(4):87
Yang D, Chen Z J, Liu P K, et al. Analysis and prediction of the service life of a mortar tube. <italic>J Gun Launch Control</italic>, 2017, 38(4): 87
|
[19] |
American Society for Testing Material, G--04 Committee. ASTM G124—10 Standard Test Method for Determining the Burning Behavior of Metallic Materials in Oxygen-enriched Atmospheres. West Conshohocken: ASTM International, 2010
|
[20] |
Hust J G, Clark A F. A survey of compatibility of materials with high pressure oxygen service. <italic>Cryogenics</italic>, 1973, 13(6): 325 doi: 10.1016/0011-2275(73)90057-X
|
[21] |
王宏亮, 黃進峰, 連勇, 等. 高溫合金GH4169和GH4202在富氧環境中的燃燒行為. 工程科學學報, 2016, 38(9):1288
Wang H L, Huang J F, Lian Y, et al. Combustion behavior of GH4169 and GH4202 superalloys in oxygen-enriched Atmosphere. <italic>Chin J Eng</italic>, 2016, 38(9): 1288
|
[22] |
陳鴻海. 金屬腐蝕學. 北京: 北京理工大學出版社, 1995
Chen H H. Metal Corrosion. Beijing: Beijing Institute of Technology Press, 1995
|
[23] |
Ouyang P X, Mi G B, Cao J X, et al. Microstructure characteristics after combustion and fireproof mechanism of TiAl-based alloys. <italic>Mater Today Commun</italic>, 2018, 16: 364 doi: 10.1016/j.mtcomm.2018.07.012
|
[24] |
Wang W X, Xue Z L, Song S Q, et al. Research on smelting vanadium steel by silicothermic reduction direct alloying with V<sub>2</sub>O<sub>5</sub>. <italic>Adv Mater Res</italic>, 2012, 476-478: 164 doi: 10.4028/www.scientific.net/AMR.476-478.164
|
[25] |
王標, 田偉. TC4鈦合金燃燒形貌和機理分析. 燃氣渦輪試驗與研究, 2013, 26(3):50 doi: 10.3969/j.issn.1672-2620.2013.03.011
Wang B, Tian W. Combustion morphology and mechanism analysis of titanium alloy TC4. <italic>Gas Turbine Exp Res</italic>, 2013, 26(3): 50 doi: 10.3969/j.issn.1672-2620.2013.03.011
|
[26] |
葛志明. 鈦的二元系相圖. 北京: 國防工業出版社, 1977
Ge Z M. Phase Diagram of Binary System of Titanium. Beijing: National Defense Industry Press, 1977
|
[27] |
Li B, Ding R D, Shen Y F, et al. Preparation of Ti–Cr and Ti–Cu flame-retardant coatings on Ti–6Al–4V using a high-energy mechanical alloying method: A preliminary research. <italic>Mater Des</italic>, 2012, 35: 25 doi: 10.1016/j.matdes.2011.09.017
|