Citation: | LI Ya-qiong, LI Yang, XI Zuo-shuai, YANG Hong, HUANG Xiu-bing. Eggplant-derived porous carbon encapsulating polyethylene glycol as phase change materials[J]. Chinese Journal of Engineering, 2020, 42(1): 106-112. doi: 10.13374/j.issn2095-9389.2019.08.06.001 |
[1] |
Deng J, Li M M, Wang Y. Biomass-derived carbon: synthesis and applications in energy storage and conversion. Green Chem, 2016, 18(18): 4824 doi: 10.1039/C6GC01172A
|
[2] |
Huang X Y, Xia W, Zou R Q. Nanoconfinement of phase change materials within carbon aerogels: phase transition behaviours and photo-to-thermal energy storage. J Mater Chem A, 2014, 2(47): 19963 doi: 10.1039/C4TA04605F
|
[3] |
Saman W, Bruno F, Halawa E. Thermal performance of PCM thermal storage unit for a roof integrated solar heating system. Sol Energy, 2005, 78(2): 341 doi: 10.1016/j.solener.2004.08.017
|
[4] |
Cabeza L F, Castell A, Barreneche C, et al. Materials used as PCM in thermal energy storage in buildings: a review. Renewable Sustainable Energy Rev, 2011, 15(3): 1675 doi: 10.1016/j.rser.2010.11.018
|
[5] |
Parameshwaran R, Kalaiselvam S. Energy conservative air conditioning system using silver nano-based PCM thermal storage for modern buildings. Energy Build, 2014, 69: 202 doi: 10.1016/j.enbuild.2013.09.052
|
[6] |
Sánchez P, Sánchez-Fernandez M V, Romero A, et al. Development of thermo-regulating textiles using paraffin wax microcapsules. Thermochim Acta, 2010, 498(1-2): 16 doi: 10.1016/j.tca.2009.09.005
|
[7] |
Nejman A, Cie?lak M, Gajdzicki B, et al. Methods of PCM microcapsules application and the thermal properties of modified knitted fabric. Thermochim Acta, 2014, 589: 158 doi: 10.1016/j.tca.2014.05.037
|
[8] |
Beyhan B, Paksoy H, Da?gan Y. Root zone temperature control with thermal energy storage in phase change materials for soilless greenhouse applications. Energy Convers Manage, 2013, 74: 446 doi: 10.1016/j.enconman.2013.06.047
|
[9] |
Sundararajan S, Samui A B, Kulkarni P S. Versatility of polyethylene glycol (PEG) in designing solid-solid phase change materials (PCMs) for thermal management and their application to innovative technologies. J Mater Chem A, 2017, 5(35): 18379 doi: 10.1039/C7TA04968D
|
[10] |
Min X, Fang M H, Huang Z H, et al. Enhanced thermal properties of novel shape-stabilized PEG composite phase change materials with radial mesoporous silica sphere for thermal energy storage. Sci Rep, 2015, 5: 12964 doi: 10.1038/srep12964
|
[11] |
Andriamitantsoa R S, Dong W J, Gao H Y, et al. PEG encapsulated by porous triamide-linked polymers as support for solid-liquid phase change materials for energy storage. Chem Phys Lett, 2017, 671: 165 doi: 10.1016/j.cplett.2017.01.028
|
[12] |
Feng Y H, Wei R Z, Huang Z, et al. Thermal properties of lauric acid filled in carbon nanotubes as shape-stabilized phase change materials. Phys Chem Chem Phys, 2018, 20(11): 7772 doi: 10.1039/C7CP08557E
|
[13] |
Zhou M, Lin T Q, Huang F Q, et al. Highly conductive porous graphene/ceramic composites for heat transfer and thermal energy storage. Adv Funct Mater, 2013, 23(18): 2263 doi: 10.1002/adfm.201202638
|
[14] |
Yang J, Tang L S, Bao R Y, et al. Hybrid network structure of boron nitride and graphene oxide in shape-stabilized composite phase change materials with enhanced thermal conductivity and light-to-electric energy conversion capability. Sol Energy Mater Sol Cells, 2018, 174: 56 doi: 10.1016/j.solmat.2017.08.025
|
[15] |
Qi G Q, Yang J, Bao R Y, et al. Enhanced comprehensive performance of polyethylene glycol based phase change material with hybrid graphene nanomaterials for thermal energy storage. Carbon, 2015, 88: 196 doi: 10.1016/j.carbon.2015.03.009
|
[16] |
Yang J, Li X F, Han S, et al. Air-dried, high-density graphene hybrid aerogels for phase change composites with exceptional thermal conductivity and shape stability. J Mater Chem A, 2016, 4(46): 18067 doi: 10.1039/C6TA07869A
|
[17] |
Shang Y, Zhang D. Preparation and thermal properties of graphene oxide-microencapsulated phase change materials. Nanoscale Microscale Thermophys Eng, 2016, 20(3-4): 145
|
[18] |
Wei Y H, Li J J, Sun F R, et al. Leakage-proof phase change composites supported by biomass carbon aerogels from succulents. Green Chem, 2018, 20(8): 1858 doi: 10.1039/C7GC03595K
|
[19] |
Li Y Q, Samad Y A, Polychronopoulou K, et al. From biomass to high performance solar-thermal and electric-thermal energy conversion and storage materials. J Mater Chem A, 2014, 2(21): 7759 doi: 10.1039/C4TA00839A
|
[20] |
Chen X, Gao H Y, Xing L W, et al. Nanoconfinement effects of N-doped hierarchical carbon on thermal behaviors of organic phase change materials. Energy Storage Mater, 2019, 18: 280 doi: 10.1016/j.ensm.2018.08.024
|
[21] |
Feng L L, Song P, Yan S C, et al. The shape-stabilized phase change materials composed of polyethylene glycol and graphitic carbon nitride matrices. Thermochim Acta, 2015, 612: 19 doi: 10.1016/j.tca.2015.05.001
|