<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 8
Aug.  2019
Turn off MathJax
Article Contents
ZHANG Zhuang, CAO Ling-ling, LIN Wen-hui, SUN Jian-kun, FENG Xiao-ming, LIU Qing. Improved prediction model for BOF end-point manganese content based on IPSO-RELM method[J]. Chinese Journal of Engineering, 2019, 41(8): 1052-1060. doi: 10.13374/j.issn2095-9389.2019.08.011
Citation: ZHANG Zhuang, CAO Ling-ling, LIN Wen-hui, SUN Jian-kun, FENG Xiao-ming, LIU Qing. Improved prediction model for BOF end-point manganese content based on IPSO-RELM method[J]. Chinese Journal of Engineering, 2019, 41(8): 1052-1060. doi: 10.13374/j.issn2095-9389.2019.08.011

Improved prediction model for BOF end-point manganese content based on IPSO-RELM method

doi: 10.13374/j.issn2095-9389.2019.08.011
More Information
  • Corresponding author: LIU Qing, E-mail: qliu@ustb.edu.cn
  • Received Date: 2018-08-08
  • Publish Date: 2019-08-01
  • The basic oxygen furnace (BOF) steelmaking process, as the predominant steelmaking method used around the world, involves very complex physical and chemical phenomena such as multi-component reactions, multi-phase fluid dynamics, and high temperature. The main task of the BOF process is tailoring the temperature and melt components to meet the requirements of high-quality steel production. With the development of intelligent steelmaking, the prediction of the end-point manganese content is an extremely important task for the BOF process, and improving the level of control regarding the end-point of BOF steelmaking can reduce production costs and enhance efficiency. In this paper, the mechanism of the BOF steelmaking process and the factors influencing the endpoint manganese content were analyzed. The control variables for predicting the end-point manganese content were also determined. To solve the problems of slow convergence, weak generalization ability, and low prediction accuracy in the prediction model established for the BP neural network, a new modeling concept based on an extreme learning machine (ELM) algorithm was proposed. By introducing regularization and improved particle swarm optimization (IPSO), a prediction model for the end-point manganese content in a converter based on improved particle swarm optimization and a regularized ELM (IPSO-RELM) was established. The paper then trained and verified the performance of these models with actual production data. A comparison of the performance of the proposed model with those of the prediction model of the BP neural network, the ELM model, and the RELM model reveals that the IPSO-RELM prediction model has the highest prediction accuracy and the best generalization performance. The hit ratio of the IPSO-RELM prediction model is 94%when the predictive errors of the model are within 0. 025%, the mean square error is 2. 18 × 10-8, and the fitting degree is 0. 72. Relative to the above three models, the IPSO-RELM prediction model may provide a more accurate prediction of the end-point manganese content and thus serves as a good reference point for actual production.

     

  • loading
  • [1]
    Takawa T, Katayama K, Hoteiya M, et al. Mathematical model of end point control for the top and bottom blowing process in BOF. Trans ISIJ, 1987, 27(12): 951 doi: 10.2355/isijinternational1966.27.951
    [2]
    He F, He D F, Xu A J, et al. Hybridmodel of molten steel temperature prediction based on ladle heat status and artificial neural network. J Iron Steel Res Int, 2014, 21(2): 181 doi: 10.1016/S1006-706X(14)60028-5
    [3]
    Wang H B, Cai J, Feng K. Predicting theendpoint phosphorus content of molten steel in BOF by two-stage hybrid method. J Iron Steel Res Int, 2014, 21(Suppl 1): 65 http://www.sciencedirect.com/science/article/pii/S1006706X14601230
    [4]
    Cox I J, Lewis R W, Ransing R S, et al. Application of neural computing in basic oxygen steelmaking. J Mater Process Technol, 2002, 120(1-3): 310 doi: 10.1016/S0924-0136(01)01136-0
    [5]
    張貴玉, 萬雪峰, 林東, 等. 基于爐氣分析的熔池碳含量及溫度變化研究. 鋼鐵研究學報, 2006, 18(11): 56 doi: 10.3321/j.issn:1001-0963.2006.11.014

    Zhang G Y, Wan X F, Lin D, et al. Carbon content and temperature variation of bath based on exhaust gas analysis. J Iron Steel Res, 2006, 18(11): 56 doi: 10.3321/j.issn:1001-0963.2006.11.014
    [6]
    高輪武志, 佐藤光信, 岡田剛, 等. 數式モデルによる転爐自動吹錬技術の開発. 鉄と鋼, 1988, 74(4): 664

    Takawa T, Sato M, Okada T, et al. Development of automatic blowing technique in BOF based on a mathematical model. Tetsu-to-Hagane, 1988, 74(4): 664
    [7]
    楊立紅, 劉瀏, 何平. 轉爐冶煉終點錳成分的預報模型. 煉鋼, 2003, 19(1): 10 doi: 10.3969/j.issn.1002-1043.2003.01.002

    Yang L H, Liu L, He P. [Mn]ep prediction model for melt in oxygen converter. Steelmaking, 2003, 19(1): 10 doi: 10.3969/j.issn.1002-1043.2003.01.002
    [8]
    劉錕, 劉瀏, 何平. 基于副槍的轉爐終點磷錳控制模型與脫磷優化. 鋼鐵, 2008, 43(7): 32 doi: 10.3321/j.issn:0449-749X.2008.07.007

    Liu K, Liu L, He P. Endpoint phosphorus and manganese content control model based on sublance technique and optimization of dephosphorization process. Iron Steel, 2008, 43(7): 32 doi: 10.3321/j.issn:0449-749X.2008.07.007
    [9]
    Wang Z, Chang J, Ju Q P, et al. Predictionmodel of end-point manganese content for BOF steelmaking process. ISIJ Int, 2012, 52(9): 1585 doi: 10.2355/isijinternational.52.1585
    [10]
    Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: Theory and applications. Neurocomputing, 2006, 70(1-3): 489 doi: 10.1016/j.neucom.2005.12.126
    [11]
    趙搶搶, 侯保林. 函數型數據分析與優化極限學習機結合的彈藥傳輸機械臂參數辨識. 工程科學學報, 2017, 39(4): 611 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201704017.htm

    Zhao Q Q, Hou B L. Parameter identification of a shell transfer arm using FDA and optimized ELM. Chin J Eng, 2017, 39(4): 611 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201704017.htm
    [12]
    Deng W Y, Zheng Q H, Chen L. Regularizedextreme learning machine//IEEE Symposium on Computational Intelligence & Data Mining. Nashville, 2009: 389
    [13]
    熊文濤, 禹寶軍, 孫林. 改進粒子群算法對1420mm五機架冷連軋機軋制規程的優化. 鋼鐵研究學報, 2014, 26(11): 25 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON201411006.htm

    Xiong W T, Yu B J, Sun L. Improved particle swarm optimization of rolling schedule on 420 mm 5-stand tandem cold strip mill. J Iron Steel Res, 2014, 26(11): 25 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON201411006.htm
    [14]
    Kennedy J, Eberhart R. Particle swarm optimization//Proceedings of ICNN' 95-International Conference on Neural Networks. Perth, 1995: 1942
    [15]
    李擎, 徐銀梅, 張德政, 等. 基于粒子群算法的移動機器人全局路徑規劃策略. 北京科技大學學報, 2010, 32(3): 397 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201003022.htm

    Li Q, Xu Y M, Zhang D Z, et al. Global path planning method for mobile robots based on the particle swarm algorithm. J Univ Sci Technol Beijing, 2010, 32(3): 397 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201003022.htm
    [16]
    陶海龍. 基于混合智能算法的鐵路運量預測研究[學位論文]. 蘭州: 蘭州交通大學, 2012

    Tao H L. Study on Forecast of Railway Traffic Volume Based on Hybrid Intelligent Algorithm[Dissertation]. Lanzhou: Lanzhou Jiaotong University, 2012
    [17]
    Bueno-Crespo A, García-Laencina P J, Sancho-Gómez J L. Neural architecture design based on extreme learning machine. Neural Networks, 2013, 48: 19 doi: 10.1016/j.neunet.2013.06.010
    [18]
    陳恒志, 楊建平, 盧新春, 等. 基于極限學習機(ELM)的連鑄坯質量預測. 工程科學學報, 2018, 40(7): 815 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201807007.htm

    Chen H Z, Yang J P, Lu X C, et al. Quality prediction of the continuous casting bloom based on the extreme learning machine. Chin J Eng, 2018, 40(7): 815 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201807007.htm
    [19]
    Na W B, Su Z W, Ji Y F. Research ofsingle well production prediction based on improved extreme learning machine. Appl Mech Mater, 2013, 333-335: 1296 doi: 10.4028/www.scientific.net/AMM.333-335.1296
    [20]
    Martínez-Martínez J M, Escandell-Montero P, Soria-Olivas E, et al. Regularized extreme learning machine for regression problems. Neurocomputing, 2011, 74(17): 3716 doi: 10.1016/j.neucom.2011.06.013
    [21]
    Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators. Neural Networks, 1989, 2(5): 359 doi: 10.1016/0893-6080(89)90020-8
    [22]
    杜斌, 林云. 通用智能自動建模軟件開發與應用. 計算技術與自動化, 2003, 22(2): 103 doi: 10.3969/j.issn.1003-6199.2003.02.030

    Du B, Lin Y. Development andapplication of an universal automatic modeling tools. Comput Technol Autom, 2003, 22(2): 103 doi: 10.3969/j.issn.1003-6199.2003.02.030
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article views (1116) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频