Citation: | SU Hong-yi, WEI Shi-cheng, LIANG Yi, WANG Yu-jiang, WANG Bo, YUAN Yue, XU Bin-shi. Combined effect of hydrostatic pressure and dissolved oxygen on the electrochemical behavior of low-alloy high-strength steel[J]. Chinese Journal of Engineering, 2019, 41(8): 1029-1036. doi: 10.13374/j.issn2095-9389.2019.08.008 |
[1] |
Beccaria A M, Poggi G. Influence of hydrostatic pressure on pitting of aluminum in sea water. Br Corros J, 1985, 20(4): 183 doi: 10.1179/000705985798272632
|
[2] |
Beccaria A M, Poggi G, Gingaud D, et al. Effect of hydrostatic pressure on passivating power of corrosion layers formed on 6061 T6 aluminum alloy in sea water. Br Corros J, 1994, 29(1): 65 doi: 10.1179/000705994798267962
|
[3] |
Zhang C, Zhang Z W, Liu L. Degradation in pitting resistance of 316L stainless steel under hydrostatic pressure. Electrochim Acta, 2016, 210: 401 doi: 10.1016/j.electacta.2016.05.169
|
[4] |
Yang Y G, Zhang T, Shao Y W, et al. Effect of hydrostatic pressure on the corrosion behaviour of Ni-Cr-Mo-V high strength steel. Corros Sci, 2010, 52(8): 2697 doi: 10.1016/j.corsci.2010.04.025
|
[5] |
Yang Y G, Zhang T, Shao Y W, et al. New understanding of the effect of hydrostatic pressure on the corrosion of Ni-Cr-Mo-V high strength steel. Corros Sci, 2013, 73: 250 doi: 10.1016/j.corsci.2013.04.013
|
[6] |
Sun H J, Liu L, Li Y, et al. Effect of hydrostatic pressure on the corrosion behavior of a low alloy steel. J Electrochem Soc, 2013, 160(3): C89 doi: 10.1149/2.040303jes
|
[7] |
Zhu X F, Liu L, Song Y, et al. Oxygen evolution and porous anodic alumina formation. Mater Lett, 2008, 62(24): 4038 doi: 10.1016/j.matlet.2008.05.062
|
[8] |
Crossland A C, Habazaki H, Shimizu K, et al. Residual flaws due to formation of oxygen bubbles in anodic alumina. Corros Sci, 1999, 41(10): 1945 doi: 10.1016/S0010-938X(99)00035-9
|
[9] |
Feng Z C, Cheng X Q, Dong C F, et al. Effects of dissolved oxygen on electrochemical and semiconductor properties of 316L stainless steel. J Nucl Mater, 2010, 407(3): 171 doi: 10.1016/j.jnucmat.2010.10.010
|
[10] |
Le D P, Ji W S, Kim J G, et al. Effect of antimony on the corrosion behavior of low-alloy steel for flue gas desulfurization system. Corros Sci, 2008, 50(4): 1195 doi: 10.1016/j.corsci.2007.11.027
|
[11] |
Song S Z. Investigative Methods of Corrosion Electrochemistry. Beijing: Chemical Industry Press, 1988
|
[12] |
Melchers R E. Effect of small compositional changes on marine immersion corrosion of low alloy steels. Corros Sci, 2004, 46(7): 1669 doi: 10.1016/j.corsci.2003.10.004
|
[13] |
Carvalho D S, Joia C J B, Mattos O R. Corrosion rate of iron and iron-chromium alloys in CO2 -medium. Corros Sci, 2005, 47(12): 2974 doi: 10.1016/j.corsci.2005.05.052
|
[14] |
Xu L Y, Cheng Y F. An experimental investigation of corrosion of X100 pipeline steel under uniaxial elastic stress in a near-neutral pH solution. Corros Sci, 2012, 59: 103 doi: 10.1016/j.corsci.2012.02.022
|
[15] |
Xu L Y, Cheng Y F. Corrosion of X100 pipeline steel under plastic strain in a neutral pH bicarbonate solution. Corros Sci, 2012, 64: 145 doi: 10.1016/j.corsci.2012.07.012
|
[16] |
Wang Y X, Zhao W M, Ai H, et al. Effects of strain on the corrosion behaviour of X80 steel. Corros Sci, 2011, 53(9): 2761 doi: 10.1016/j.corsci.2011.05.011
|