<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 8
Aug.  2019
Turn off MathJax
Article Contents
SHANG Bing, JIANG Ri-peng, LI Xiao-qian, LI Rui-qing, ZHANG Yun, ZHANG Li-hua. Effect of ultrasonic outfield on solidification rules of ZL205A aluminum alloy under different temperature-control states[J]. Chinese Journal of Engineering, 2019, 41(8): 1007-1015. doi: 10.13374/j.issn2095-9389.2019.08.006
Citation: SHANG Bing, JIANG Ri-peng, LI Xiao-qian, LI Rui-qing, ZHANG Yun, ZHANG Li-hua. Effect of ultrasonic outfield on solidification rules of ZL205A aluminum alloy under different temperature-control states[J]. Chinese Journal of Engineering, 2019, 41(8): 1007-1015. doi: 10.13374/j.issn2095-9389.2019.08.006

Effect of ultrasonic outfield on solidification rules of ZL205A aluminum alloy under different temperature-control states

doi: 10.13374/j.issn2095-9389.2019.08.006
More Information
  • Corresponding author: JIANG Ri-peng, E-mail: jiangripeng@163.com
  • Received Date: 2018-07-16
  • Publish Date: 2019-08-01
  • Since the development of the aviation industry, improving the flight performance and reducing the weight of aircrafts has always been the goal pursued by aviation designers. Therefore, it becomes increasingly important to develop a new alloy material with high hardness, high strength, and light weight. To obtain excellent mechanical properties and good corrosion resistance, a new kind of alloy material, ZL205A alloy, was developed by the Beijing Institute of Aerial Materials (BAM) in the 1960s. Owing to its favorable mechanical properties and excellent corrosion resistance, ZL205A alloy has been well applied in the aviation industry. However, this kind of Al alloy still possesses some undesirable solidification defects: shrinkage, porosities, coarsening grains, and solute segregation. Ultrasonic melt treatment (UST) provides a means to eliminate or modify these defects. In the present work, the effects of UST on ZL205A alloy were investigated for two conditions, i.e., before casting and during solidification in ambient environment. Then, the effects of ultrasonication on the as-cast microstructures and the tensile properties were accordingly characterized and analyzed. For the case in which UST was only introduced before casting (holding temperature at 750℃), degassing and the distribution of secondary phases were modified. For the case in which UST was only introduced when cooling from 750℃ for 7 min 10 s to about 650℃, grain refinement and reduced porosities were generated. When UST was continuously employed for both conditions, the above properties were further improved compared with those of ingots without ultrasonic treatment. The mechanical tensile test results show that the improvement of the ingot internal structure can improve the ingot mechanical tensile properties, which proves the correctness of the above research results. Thus, UST carried out at two different conditions induced different regulatory functions and influencing mechanisms. This study shows that the UST of ZL205A aluminum alloy in different melt states has different emphases on improving the internal structure of the ingot.

     

  • loading
  • [1]
    鄭來蘇. 鑄造合金及其熔煉. 西安: 西北工業大學出版社, 1994

    Zheng L S. Casting Alloy and Smelting. Xian: Northwestern Polytechnical University Press, 1994
    [2]
    Wang Y, Wu S P, Xue X, et al. Formation mechanism and criterion of linear segregation in ZL205A alloy. Trans Nonferrous Met Soc China, 2014, 24(11): 3632 doi: 10.1016/S1003-6326(14)63508-1
    [3]
    賢福超, 郝啟堂, 范理. ZL205A合金塊狀偏析形成機理. 稀有金屬材料與工程, 2014, 43(4): 941 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201404035.htm

    Xian F C, Hao Q T, Fan L. Formation mechanism of massive segregation of ZL205A alloy. Rare Met Mater Eng, 2014, 43(4): 941 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201404035.htm
    [4]
    Fan L, Hao Q T, Xian F C. Element segregation behavior of aluminum-copper alloy ZL205A. China Foundry, 2014, 11(6): 510 http://www.cnki.com.cn/Article/CJFDTotal-ZZAF201406008.htm
    [5]
    林超, 張鴻, 畢亮, 等. 鑄造Al-Cu合金凝固缺陷研究現狀. 材料導報, 2016, 30(11): 143 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201621022.htm

    Lin C, Zhang H, Bi L, et al. Research status of casting defects of cast Al-Cu alloys. Mater Rev, 2016, 30(11): 143 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201621022.htm
    [6]
    劉志偉, 李怡, 王寧. ZL205A鋁合金鑄件顯微疏松研究. 輕合金加工技術, 2013, 41(7): 18 https://www.cnki.com.cn/Article/CJFDTOTAL-QHJJ201307006.htm

    Liu Z W, Li Y, Wang N. Research on micro-porosity of ZL205A aluminum alloy casting. Light Alloy Fabric Technol, 2013, 41(7): 18 https://www.cnki.com.cn/Article/CJFDTOTAL-QHJJ201307006.htm
    [7]
    曹飛, 蔣日鵬, 李曉謙, 等. 超聲預處理對ZL205A鋁合金鑄件凝固組織的影響. 中南大學學報: 自然科學版, 2018, 49(1): 31 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201801005.htm

    Cao F, Jiang R P, Li X Q, et al. Effect of ultrasonic pretreatment on microstructures of ZL205A aluminum alloy casting. J Cent South Univ Sci Technol, 2018, 49(1): 31 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201801005.htm
    [8]
    Wang F, Eskin D, Mi J W, et al. A refining mechanism of primary Al3Ti intermetallic particles by ultrasonic treatment in the liquid state. Acta Mater, 2016, 116: 354 doi: 10.1016/j.actamat.2016.06.056
    [9]
    蔣日鵬, 李曉謙, 李開燁, 等. 超聲對鋁合金凝固傳熱與組織形成的影響與作用機制. 中南大學學報: 自然科學版, 2012, 43(10): 3807 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201210010.htm

    Jiang R P, Li X Q, Li K Y, et al. Effect of ultrasonic on heat transfer and microstructure formation of aluminum alloy during solidification and its mechanism. J Cent South Univ Sci Technol, 2012, 43(10): 3807 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201210010.htm
    [10]
    Zocchi M L. Ultrasonic assisted lipoplasty. Technical refinements and clinical evaluations. Clin Plast Surg, 1996, 23(4): 575 doi: 10.1016/S0094-1298(20)32557-8
    [11]
    Riedler M, 韋菁, 劉友存. 鋼凝固期間縮孔形成的數值模擬與試驗驗證. 鋼鐵譯文集, 2016(2): 16

    Riedler M, Wei J, Liu Y C. Formation of shrinkage porosity during solidification of steel: numerical simulation and experimental validation. Iron Steel Transl Collect, 2016(2): 16
    [12]
    蔣日鵬, 李曉謙, 劉榮光, 等. 功率超聲對純鋁的細晶機制及作用區域研究. 特種鑄造及有色合金, 2008, 28(7): 560 doi: 10.3870/tzzz.2008.07.023

    Jiang R P, Li X Q, Liu R G, et al. Effects of power ultrasonic on grain refining mechanism and action area in pure aluminum. Spec Casting Nonferrous Alloys, 2008, 28(7): 560 doi: 10.3870/tzzz.2008.07.023
    [13]
    戴斌煜. 金屬液態成型原理. 北京: 國防工業出版社, 2010

    Dai B Y. Metal Liquid Forming Principle. Beijing: National Defense Industry Press, 2010
    [14]
    張鴻雁, 張志政, 王元, 等. 流體力學. 2版. 北京: 科學出版社, 2014

    Zhang H Y, Zhang Z Z, Wang Y, et al. Fluid Mechanics. 2nd Ed. Beijing. Science Press, 2014
    [15]
    陳偉中. 聲空化物理. 北京: 科學出版社, 2014

    Chen W Z. Acoustic Cavitation Physics. Beijing. Science Press, 2014
    [16]
    田榮璋. 鑄造鋁合金. 長沙: 中南大學出版社, 2006

    Tian R Z. Casting Aluminum Alloys. Changsha: Central South University Press, 2006
    [17]
    李瑞卿, 李曉謙, 陳平虎, 等. 超聲空化對大規格高強鋁合金熱頂鑄造凝固組織的影響及作用機理. 中南大學學報: 自然科學版, 2016, 47(10): 3354 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201610010.htm

    Li R Q, Li X Q, Chen P H, et al. Effect rules and function mechanism of ultrasonic cavitation on solidification microstructure of large size high-strength aluminum alloy with hot top casting. J Cent South Univ Sci Technol, 2016, 47(10): 3354 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201610010.htm
    [18]
    Zhang Y, Li F L, Luo Z, et al. Effect of applied pressure and ultrasonic vibration on microstructure and microhardness of Al-5.0Cu alloy. Trans Nonferrous Met Soc China, 2016, 26(9): 2296 doi: 10.1016/S1003-6326(16)64348-0
    [19]
    Zhang R S, Wang H, Tian M, et al. Pressureless reaction sintering and hot isostatic pressing of transparent MgAlON ceramic with high strength. Ceram Int, 2018, 44(14): 17383 doi: 10.1016/j.ceramint.2018.06.203
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views (940) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频