<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 8
Aug.  2019
Turn off MathJax
Article Contents
JIAO Hua-zhe, WANG Shu-fei, WU Ai-xiang, SHEN Hui-ming, YANG Yi-xuan, RUAN Zhu-en. Pore network model of tailings thickener bed and water drainage channel evolution under the shearing effect[J]. Chinese Journal of Engineering, 2019, 41(8): 987-996. doi: 10.13374/j.issn2095-9389.2019.08.004
Citation: JIAO Hua-zhe, WANG Shu-fei, WU Ai-xiang, SHEN Hui-ming, YANG Yi-xuan, RUAN Zhu-en. Pore network model of tailings thickener bed and water drainage channel evolution under the shearing effect[J]. Chinese Journal of Engineering, 2019, 41(8): 987-996. doi: 10.13374/j.issn2095-9389.2019.08.004

Pore network model of tailings thickener bed and water drainage channel evolution under the shearing effect

doi: 10.13374/j.issn2095-9389.2019.08.004
More Information
  • Corresponding author: YANG Yi-xuan, E-mail: yangyixuan@hpu.edu.cn
  • Received Date: 2018-10-03
  • Publish Date: 2019-08-01
  • Shearing is the basic factor involved in gravity thickening of paste. This work focuses on the influence of pores and throats characteristics on water drainage channel evolution, and determines the proportion of discharged water in tailings thickener bed. Pilot-scale experiment combined with computed tomography (CT) and pore network model (PNM) technology to determine the micropore structure. The maximum ball algorithm is used to analyze the evolution of pores and throats with and without shearing. The results show that the tailings underflow concentration increases from 55.8% to 58.5% under 2 r·min-1 rake shearing and the porosity decreases from 43.05% to 36.59%, the decrease rate of porosity is 15%. The pore structure can be divided into two types, i.e., "balls" and "sticks, " by the PNM technology. The quantity of "balls" and "sticks" increases by 16.5% and 22%, respectively. However, the average radius of balls decreases slightly in the range of 40-60 μm under shearing. The average radius of sticks decreases from 9.83 μm to 8.58 μm, i.e., by 12.7%. Nevertheless, the length of sticks exhibits only a slight change. The coordination number of balls increases significantly from 25.73% to 44.58% in the range of 5-10 under shearing, and the particles are in close contact. The concept of "the volume ratio of pores to balls" is proposed for the quantitative characterization of the pore structure. The volume fraction of balls decreases from 14.14% to 12.75%, the decrease rate of volume fraction is 9.83%, and volume fraction of sticks decreases from 28.91% to 23.84%, the decrease rate of volume fraction is 17.54%. The volume ratio of balls to sticks increases from 48.91% to 53.48%, and increase rate of it is 9.34%. When the volume decrease of balls is more than that of sticks, the volume ratio of balls to sticks increases. This work reveals the shearing drainage mechanism of unclassified tailings gravity thickening from the perspective of pore structure change, i.e., the drainage is mainly discharged from the throat more than the pore from the tailings thickener bed shear dewatering process.

     

  • loading
  • [1]
    吳愛祥, 楊瑩, 程海勇, 等. 中國膏體技術發展現狀與趨勢. 工程科學學報, 2018, 40(5): 517 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201805001.htm

    Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201805001.htm
    [2]
    王洪江, 周旭, 吳愛祥, 等. 膏體濃密機扭矩計算模型及其影響因素. 工程科學學報, 2018, 40(6): 673 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201806004.htm

    Wang H J, Zhou X, Wu A X, et al. Mathematical model and factors of paste thickener rake torque. Chin J Eng, 2018, 40(6): 673 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201806004.htm
    [3]
    郭利杰, 許文遠, 史采星. 堆存尾砂膠結充填處理廢棄采空區的應用實踐. 中國礦業, 2014, 23(增刊2): 194 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA2014S2046.htm

    Guo L J, Xu W Y, Shi C X. Application of the stockpile tailings cemented filling technology on abandoned cavity treatment. China Min Mag, 2014, 23(Suppl 2): 194 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA2014S2046.htm
    [4]
    Y?lmaz T, Ercikdi B, Deveci H. Utilisation of construction and demolition waste as cemented paste backfill material for underground mine openings. J Environ Manage, 2018, 222: 250 doi: 10.1016/j.jenvman.2018.05.075
    [5]
    單智勇, 蘇勇松. 膏體充填工作面底板破壞深度研究. 河南理工大學學報: 自然科學版, 2012, 31(1): 35 doi: 10.3969/j.issn.1673-9787.2012.01.008

    Shan Z Y, Su Y S. Study on the broken depth of floor failure on the mining face with paste filling. J Henan Polytech Univ Nat Sci, 2012, 31(1): 35 doi: 10.3969/j.issn.1673-9787.2012.01.008
    [6]
    Khaldoun A, Ouadif L, Baba K, et al. Valorization of mining waste and tailings through paste backfilling solution, Imiter operation, Morocco. Int J Min Sci Technol, 2016, 26(3): 511 doi: 10.1016/j.ijmst.2016.02.021
    [7]
    尹升華, 邵亞建, 吳愛祥, 等. 含硫充填體膨脹裂隙發育特性與單軸抗壓強度的關聯分析. 工程科學學報, 2018, 40(1): 9 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201801002.htm

    Yin S H, Shao Y J, Wu A X, et al. Association analysis of expansion crack development characteristics and uniaxial compressive strength property of sulphide-containing backfill. Chin J Eng, 2018, 40(1): 9 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201801002.htm
    [8]
    Cao S, Song W D, Yilmaz E. Influence of structural factors on uniaxial compressive strength of cemented tailings backfill. Constr Build Mater, 2018, 174: 190 doi: 10.1016/j.conbuildmat.2018.04.126
    [9]
    曹帥, 宋衛東, 薛改利, 等. 分層尾砂膠結充填體力學特性變化規律及破壞模式. 中國礦業大學學報, 2016, 45(4): 717 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201604009.htm

    Cao S, Song W D, Xue G L, et al. Mechanical characteristics variation of stratified cemented tailing backfilling and its failure modes. J China Univ Min Technol, 2016, 45(4): 717 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201604009.htm
    [10]
    楊志強, 王永前, 高謙, 等. 金川鎳礦混合充填集料膠結充填體強度試驗研究. 河南理工大學學報(自然科學版), 2015, 34(2): 171 https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB201502007.htm

    Yang Z Q, Wang Y Q, Gao Q, et al. Test research on cemented filling body strength of mixed filling aggregate in Jinchuan Nickel mine. J Henan Polytech Univ Nat Sci, 2015, 34(2): 171 https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB201502007.htm
    [11]
    劉浪, 朱超, 陳國龍, 等. 微觀尺度下含硫尾砂膠結充填體侵蝕機理. 西安科技大學學報, 2018, 38(4): 553 https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201804007.htm

    Liu L, Zhu C, Chen G L, et al. Erosion mechanism of sulfur-bearing tailings in micro-scale. J Xi'an Univ Sci Technol, 2018, 38(4): 553 https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201804007.htm
    [12]
    Sun W, Hou K P, Yang Z Q, et al. X-ray CT three-dimensional reconstruction and discrete element analysis of the cement paste backfill pore structure under uniaxial compression. Construction Building Mater, 2017, 138: 69 doi: 10.1016/j.conbuildmat.2017.01.088
    [13]
    楊保華, 吳愛祥, 繆秀秀. 基于圖像處理的礦石顆粒三維微觀孔隙結構演化. 工程科學學報, 2016, 38(3): 328 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201603005.htm

    Yang B H, Wu A X, Miao X X. 3D micropore structure evolution of ore particles based on image processing. Chin J Eng, 2016, 38(3): 328 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201603005.htm
    [14]
    孫偉, 吳愛祥, 侯克鵬, 等. 基于X-Ray CT試驗的塌陷區回填體孔隙結構研究. 巖土力學, 2017, 38(12): 3635 https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201712032.htm

    Sun W, Wu A X, Hou K P, et al. Application of X-Ray CT technology in the pore structure study of subsidence area backfilling body. Rock Soil Mech, 2017, 38(12): 3635 https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201712032.htm
    [15]
    Wu D, Fall M, Cai S J. Numerical modelling of thermally and hydraulically coupled processes in hydrating cemented tailings backfill columns. Int J Min Reclamation Environ, 2014, 28(3): 173 doi: 10.1080/17480930.2013.809194
    [16]
    繆秀秀. 雙尺度孔隙結構礦堆精細表征及浸礦多場耦合模型研究[學位論文]. 北京: 北京科技大學, 2018

    Miao X X. Dual Pore-system Ore Aggregates Characterization and Leaching Behaviours Modelling [Dissertation]. Beijing: University of Science and Technology Beijing, 2018
    [17]
    王新民, 趙建文. 全尾砂漿最佳絮凝沉降參數. 中南大學學報(自然科學版), 2016, 47(5): 1675 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201605029.htm

    Wang X M, Zhao J W. Optimal flocculating sedimentation parameters of unclassified tailings slurry. J Cent South Univ Sci Technol, 2016, 47(5): 1675 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201605029.htm
    [18]
    劉向君, 朱洪林, 梁利喜. 基于微CT技術的砂巖數字巖石物理實驗. 地球物理學報, 2014, 57(4): 1133 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201404011.htm

    Liu X J, Zhu H L, Liang L X. Digital rock physics of sandstone based on micro-CT technology. Chin J Geophys, 2014, 57(4): 1133 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201404011.htm
    [19]
    李易霖, 張云峰, 叢琳, 等. X-CT掃描成像技術在致密砂巖微觀孔隙結構表征中的應用: 以大安油田扶余油層為例. 吉林大學學報: 地球科學版, 2016, 46(2): 379 https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201602007.htm

    Li Y L, Zhang Y F, Cong L, et al. Application of X-CT scanning technique in the characterization of micro pore structure of tight sandstone reservoir: Taking the Fuyu Oil Layer in Daan Oilfield as an Example. J Jilin Univ Earth Sci Ed, 2016, 46(2): 379 https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201602007.htm
    [20]
    宋黨育, 何凱凱, 吉小峰, 等. 基于CT掃描的煤中孔裂隙精細表征. 天然氣工業, 2018, 38(3): 41 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201803007.htm

    Song D Y, He K K, Ji X F, et al. Fine characterization of pores and fractures in coal based on a CT scan. Nat Gas Ind, 2018, 38(3): 41 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201803007.htm
    [21]
    Al-Kharusi A S, Blunt M J. Network extraction from sandstone and carbonate pore space images. J Pet Sci Eng, 2007, 56(4): 219 doi: 10.1016/j.petrol.2006.09.003
    [22]
    蘇娜. 低滲氣藏微觀孔隙結構三維重構研究[學位論文]. 成都: 西南石油大學, 2011

    Su N. Three-Dimensional Reconstruction of Microscopic Pore Structure in Low-Permeability Reservoir [Dissertation]. Chengdu: Southwest Petroleum University, 2011
    [23]
    王冬欣. 基于Micro-CT圖像的數字巖心孔隙級網絡建模研究[學位論文]. 長春: 吉林大學, 2015

    Wang D X. The Research of Digital Core Network Extraction Based on Micro-CT Images [Dissertation]. Changchun: Jilin University, 2015
    [24]
    吳愛祥, 王勇, 王洪江. 導水桿數量和排列對尾礦濃密的影響機理. 中南大學學報: 自然科學版, 2014, 45(1): 244 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201401034.htm

    Wu A X, Wang Y, Wang H J. Effect of rake rod number and arrangement on tailings thickening performance. J Cent South Univ Sci Technol, 2014, 45(1): 244 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201401034.htm
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article views (999) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频