<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 8
Aug.  2019
Turn off MathJax
Article Contents
MA Zhong-gui, SONG Jia-qian. Survey of energy efficiency for 5G ultra-dense networks[J]. Chinese Journal of Engineering, 2019, 41(8): 968-980. doi: 10.13374/j.issn2095-9389.2019.08.002
Citation: MA Zhong-gui, SONG Jia-qian. Survey of energy efficiency for 5G ultra-dense networks[J]. Chinese Journal of Engineering, 2019, 41(8): 968-980. doi: 10.13374/j.issn2095-9389.2019.08.002

Survey of energy efficiency for 5G ultra-dense networks

doi: 10.13374/j.issn2095-9389.2019.08.002
More Information
  • Corresponding author: MA Zhong-gui, E-mail: zhongguima@ustb.edu.cn
  • Received Date: 2018-07-31
  • Publish Date: 2019-08-01
  • Fifth generation (5G) cellular networks are expected to achieve high data rates, reduced latency, increased spectrum efficiency, and energy efficiency. Ultra-dense networks (UDNs), a key enabling technology in 5G cellular networks, are envisioned to support the deluge of data traffic located in hotspots and at cell edges, and to enhance quality of experience of mobile users. UDNs can significantly improve the spectrum efficiency and energy efficiency to achieve sustainability of 5G. However, the deployment of a large number of small cells poses new challenges for energy efficiency. Recently, the energy efficiency of UDNs has become a prime concern in the operation and architecture design owing to environmental and economic effects. Therefore, it is significant to study the energy efficiency of UDNs. This survey provided an overview of energy-efficient wireless communications, and reviewed seminal and recent contribution to the state-of-the-art. Therefore, the definitions of energy efficiency, a key performance indicator of the UDNs, are analyzed, which is a foundation for modeling. Four theoretical models, which were often used in the modeling and optimization of energy efficiency, were discussed. These models include stochastic geometry, game theory, optimization theory, and fractional programming theory. Energy-efficient techniques of UDNs were also reviewed. These technologies include energy-efficient deployment and planning, a base station sleeping mode, user association, radio resource management, and transmission. Finally, the most relevant research challenges were addressed, including the theory of energy efficiency of UDNs, architecture of UDNs, the high energy efficiency coverage mechanism of ultra-dense small base stations, the flexible radio resource matching mechanism of UDNs, group behavior modeling of mobile users, and high energy efficiency service methods. This review of the energy-efficient coverage mechanism and flexible radio resource matching mechanism in UDNs provides design guidelines and potential solutions for analytical modeling of future wireless networks.

     

  • loading
  • [1]
    尤肖虎, 潘志文, 高西奇, 等. 5G移動通信發展趨勢與若干關鍵技術. 中國科學: 信息科學, 2014, 44(5): 551 https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201405001.htm

    You X H, Pan Z W, Gao X Q, et al. The 5G mobile communication: the development trends and its emerging key techniques. Scientia Sinica (Informationis), 2014, 44(5): 551 https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201405001.htm
    [2]
    Yang C G, Li J D, Ni Q, et al. Interference-aware energy efficiency maximization in 5G ultra-dense networks. IEEE Trans Commun, 2017, 65(2): 728 doi: 10.1109/TCOMM.2016.2638906
    [3]
    Cisco. Ciscovisual networking index: global mobile data traffic forecast update, 2017—2022 white paper[J/OL]. Cisco Mobile VNI (2019-02-18)[2018-07-20]. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
    [4]
    The Climate Group. Smart2020: enabling the low carbon economy in the information age[R/OL]. Global e-Sustainability Initiative (2008-06-19)[2018-07-20]. https://www.theclimategroup.org/sites/default/files/archive/files/Smart2020Report.pdf
    [5]
    張建敏, 謝偉良, 楊峰義. 5G超密集組網網絡架構及實現. 電信科學, 2016, 32(6): 36 https://www.cnki.com.cn/Article/CJFDTOTAL-DXKX201606006.htm

    Zhang J M, Xie W L, Yang F Y. Architecture and solutions of 5G ultra dense network. Telecommun Sci, 2016, 32(6): 36 https://www.cnki.com.cn/Article/CJFDTOTAL-DXKX201606006.htm
    [6]
    Kamel M, Hamouda W, Youssef A. Ultra-dense networks: a survey. IEEE Commun Surveys Tutorials, 2016, 18(4): 2522 doi: 10.1109/COMST.2016.2571730
    [7]
    Han T, Ansari N. Powering mobile networks with green energy. IEEE Wireless Commun, 2014, 21(1): 90 doi: 10.1109/MWC.2014.6757901
    [8]
    Greening L A, Greene D L, Difiglio C. Energy efficiency and consumption-the rebound effect-a survey. Energy Policy, 2000, 28(6-7): 389 doi: 10.1016/S0301-4215(00)00021-5
    [9]
    Soh Y S, Quek T Q S, Kountouris M, et al. Energy efficient heterogeneous cellular networks. IEEE J Sel Areas Commun, 2013, 31(5): 840 doi: 10.1109/JSAC.2013.130503
    [10]
    Samarakoon S, Bennis M, Saad W, et al. Ultra dense small cell networks: turning density into energy efficiency. IEEE J Sel Areas Commun, 2016, 34(5): 1267 doi: 10.1109/JSAC.2016.2545539
    [11]
    白璐, 劉婷婷, 楊晨陽. 超密集網絡中干擾協調方法及性能分析. 信號處理, 2015, 31(10): 1263 doi: 10.3969/j.issn.1003-0530.2015.10.007

    Bai L, Liu T T, Yang C Y. Interference coordination method and performance analysis in ultra-dense network (UDN). J Signal Process, 2015, 31(10): 1263 doi: 10.3969/j.issn.1003-0530.2015.10.007
    [12]
    Zhang T K, Zhao J J, An L, et al. Energy efficiency of base station deployment in ultra dense HetNets: a stochastic geometry analysis. IEEE Wireless Commun Lett, 2016, 5(2): 184 doi: 10.1109/LWC.2016.2516010
    [13]
    Liu Y P, Fang X M. Joint user association and resource allocation for self-backhaul ultra-dense networks. China Commun, 2016, 13(2): 1 doi: 10.1109/CC.2016.7405718
    [14]
    Zheng C, Fan J C, Luo X M. Spectrum and energy efficiency analysis of ultra dense network with sleep // 2016 8th IEEE International Conference on Communication Software and Networks (ICCSN). Beijing, 2016: 392
    [15]
    Yang C G, Li J D, Ni Q, et al. Interference-aware energy efficiency maximization in 5G ultra-dense networks. IEEE Trans Commun, 2017, 65(2): 728 doi: 10.1109/TCOMM.2016.2638906
    [16]
    章躍躍, 夏瑋瑋, 朱亞萍, 等. 超密集網絡中基于能效最優的資源分配算法. 電信科學, 2017, 33(10): 26 https://www.cnki.com.cn/Article/CJFDTOTAL-DXKX201710005.htm

    Zhang Y Y, Xia W W, Zhu Y P, et al. An optimal energy-efficient resource allocation algorithm in ultra-dense network. Telecommun Sci, 2017, 33(10): 26 https://www.cnki.com.cn/Article/CJFDTOTAL-DXKX201710005.htm
    [17]
    Mahapatra R, Nijsure Y, Kaddoum G, et al. Energy efficiency tradeoff mechanism towards wireless green communication: a survey. IEEE Commun Surveys Tutorials, 2016, 18(1): 686 doi: 10.1109/COMST.2015.2490540
    [18]
    Yu W, Xu H S, Hematian A, et al. Towards energy efficiency in ultra dense networks // 2016 IEEE 35th IEEE Performance Computing and Communications Conference (IPCCC). Nanjing, 2016: 1
    [19]
    Venturino L, Zappone A, Risi C, et al. Energy-efficient scheduling and power allocation in downlink OFDMA networks with base station coordination. IEEE Trans Wireless Commun, 2015, 14(1): 1 doi: 10.1109/TWC.2014.2323971
    [20]
    Yang C G, Li J D, Guizani M. Cooperation for spectral and energy efficiency in ultra-dense small cell networks. IEEE Wireless Commun, 2016, 23(1): 64 doi: 10.1109/MWC.2016.7422407
    [21]
    Ren Q, Fan J C, Luo X M, et al. Analysis of spectral and energy efficiency in ultra-dense network // IEEE International Conference on Communication Workshop (ICCW). London, 2015: 2812
    [22]
    Cao D X, Zhou S, Niu Z S. Optimal combination of base station densities for energy-efficient two-tier heterogeneous cellular networks. IEEE Trans Wireless Commun, 2013, 12(9): 4350 doi: 10.1109/TWC.2013.080113.121280
    [23]
    Richter F, Fehske A J, Fettweis G P. Energy efficiency aspects of base station deployment strategies for cellular networks // 2009 IEEE 70th Vehicular Technology Conference Fall. Anchorage, 2009: 1
    [24]
    Cai Z Y, Liu D K. Baseband design for 5G UDN base stations: Methods and implementation. China Commun, 2017, 14(5): 59 doi: 10.1109/CC.2017.7942315
    [25]
    Bj?rnson E, Sanguinetti L, Kountouris M. Deploying dense networks for maximal energy efficiency: small cells meet massive MIMO. IEEE J Sel Areas Commun, 2016, 34(4): 832 doi: 10.1109/JSAC.2016.2544498
    [26]
    牛志升, 周盛, 周世東, 等. 能效與資源優化的超蜂窩移動通信系統新架構及其技術挑戰. 中國科學: 信息科學, 2012, 42(10): 1191 https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201210002.htm

    Niu Z S, Zhou S, Zhou S D, et al. Energy efficiency and resource optimized hyper-cellular mobile communication system architecture and its technical challenges. Scientia Sinica (Informationis), 2012, 42(10): 1191 https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201210002.htm
    [27]
    Yunas S F, Valkama M, Niemel? J. Spectral and energy efficiency of ultra-dense networks under different deployment strategies. IEEE Commun Mag, 2015, 53(1): 90 doi: 10.1109/MCOM.2015.7010521
    [28]
    He S W, Huang Y M, Yang L X, et al. Coordinated multicell multiuser precoding for maximizing weighted sum energy efficiency. IEEE Trans Signal Process, 2014, 62(3): 741 doi: 10.1109/TSP.2013.2294595
    [29]
    Miao G W, Himayat N, Li G Y, et al. Low-complexity energy-efficient scheduling for uplink OFDMA. IEEE Trans Commun, 2012, 60(1): 112 doi: 10.1109/TCOMM.2011.112811.090122
    [30]
    Buzzi S, Colavolpe G, Saturnino D, et. al. Potential games for energy-efficient power control and subcarrier allocation in uplink multicell OFDMA systems. IEEE J Sel Top Signal Process, 2012, 6(2): 89 doi: 10.1109/JSTSP.2011.2177069
    [31]
    Du B, Pan C H, Zhang W C, et al. Distributed energy-efficient power optimization for CoMP systems with max-min fairness. IEEE Commun Lett, 2014, 18(6): 999 doi: 10.1109/LCOMM.2014.2317734
    [32]
    張洪. 超密集組網中區域頻譜效率及區域能量效率的研究[學位論文]. 哈爾濱: 哈爾濱工業大學, 2016

    Zhang H. Research of Area Spectral Efficiency and Area Energy Efficiency in Ultra-Dense Networks[Dissertation]. Harbin: Harbin Institute of Technology, 2016
    [33]
    Li C, Zhang J, Letaief K B. Throughput and energy efficiency analysis of small cell networks with multi-antenna base stations. IEEE Trans Wireless Commun, 2014, 13(5): 2505 doi: 10.1109/TWC.2014.031714.131020
    [34]
    Chiu S N, Stoyan D, Kendall W S, et al. Stochastic Geometry and Its Application. 3rd Ed. Chichester: John Wiley and Sons Ltd, 2013
    [35]
    Mukherjee S. Analytical Modeling of Heterogeneous Cellular Networks-Geometry, Coverage, and Capacity. Cambridge: Cambridge University Press, 2014
    [36]
    Haenggi M. Stochastic Geometry for Wireless Networks. Cambridge: Cambridge University Press, 2013
    [37]
    Wang L S, Kuo G S G S. Mathematical modeling for network selection in heterogeneous wireless networks: a tutorial. IEEE Commun Surveys Tutorials, 2013, 15(1): 271 doi: 10.1109/SURV.2012.010912.00044
    [38]
    Trestian R, Ormond O, Muntean G M. Game theory-based network selection: solutions and challenges. IEEE Commun Surveys Tutorials, 2012, 14(4): 1212 doi: 10.1109/SURV.2012.010912.00081
    [39]
    馬忠貴. 博弈論及其在無線通信網絡中的應用. 北京: 國防工業出版社, 2015

    Ma Z G. Game Theory and Its Applications in Wireless Communication Networks. Beijing: National Defense Industry Press, 2015
    [40]
    Han Z, Niyato D, Saad W, et al. Game Theory in Wireless and Communication Networks: Theory, Models, and Applications. Cambridge: Cambridge University Press, 2012
    [41]
    Boyd S, Vandenberghe L. Convex Optimization. Cambridge: Cambridge University Press, 2004
    [42]
    Sundaram R K. A First Course in Optimization Theory. Cambridge: Cambridge University Press, 1996
    [43]
    Zappone A, Jorswieck E. Energy efficiency in wireless networks via fractional programming theory. Found Trends Commun Inform Theory, 2015, 11(3-4): 185 doi: 10.1561/0100000088
    [44]
    Verma R U. Semi-Infinite Fractional Programming. 1st Ed. Singapore: Springer Verlag, 2017
    [45]
    López-Pérez D, Ding M, Claussen H, et al. Towards 1 Gbps/UE in cellular systems: understanding ultra-dense small cell deployments. IEEE Commun Surveys Tutorials, 2015, 17(4): 2078 doi: 10.1109/COMST.2015.2439636
    [46]
    馬忠貴, 劉立宇, 閆文博, 等. 基于泊松簇過程的三層異構蜂窩網絡部署模型. 工程科學學報, 2017, 39(2): 309 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201702020.htm

    Ma Z G, Liu L Y, Yan W B, et al. Deployment model of three-layer heterogeneous cellular networks based on Poisson clustered process. Chin J Eng, 2017, 39(2): 309 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201702020.htm
    [47]
    Hossain E, Rasti M, Tabassum H, et al. Evolution towards 5G multi-tier cellular wireless networks: an interference management perspective. IEEE Wireless Commun, 2014, 21(3): 118 doi: 10.1109/MWC.2014.6845056
    [48]
    Xu J M, Zhang J, Andrews J G. On the accuracy of the Wyner model in cellular networks. IEEE Trans Wireless Commun, 2011, 10(9): 3098 doi: 10.1109/TWC.2011.062911.100481
    [49]
    B?aszczyszyn B, Haenggi M, Keeler P, et al. Stochastic Geometry Analysis of Cellular Networks. Cambridge: Cambridge University Press, 2018
    [50]
    ElSawy H, Hossain E, Haenggi M. Stochastic geometry for modeling, analysis, and design of multi-tier and cognitive cellular wireless networks: a survey. IEEE Commun Surveys Tutorials, 2013, 15(3): 996 doi: 10.1109/SURV.2013.052213.00000
    [51]
    Andrews J G, Baccelli F, Ganti R K. A tractable approach to coverage and rate in cellular networks. IEEE Trans Commun, 2011, 59(11): 3122 doi: 10.1109/TCOMM.2011.100411.100541
    [52]
    Dhillon H S, Ganti R K, Baccelli F, et al. Modeling and analysis of K-tier downlink heterogeneous cellular networks. IEEE J Sel Areas Commun, 2012, 30(3): 550 doi: 10.1109/JSAC.2012.120405
    [53]
    Cho S R, Choi W. Energy-efficient repulsive cell activation for heterogeneous cellular networks. IEEE J Sel Areas Commun, 2013, 31(5): 870 doi: 10.1109/JSAC.2013.130506
    [54]
    Zhong Y, Zhang W Y. Multi-channel hybrid access femtocells: a stochastic geometric analysis. IEEE Trans Commun, 2013, 61(7): 3016 doi: 10.1109/TCOMM.2013.050813.110508
    [55]
    Chen C L, Elliott R C, Krzymien W A. Downlink coverage analysis of N-tier heterogeneous cellular networks based on clustered stochastic geometry // Asilomar Conference on Signals, Systems and Computers. Pacific Grove, 2013: 1577
    [56]
    Ying Q L, Zhao Z F, Zhou Y F, et al. Characterizing spatial patterns of base stations in cellular networks // IEEE/CIC International Conference on Communications in China (ICCC). Shanghai, 2014: 490
    [57]
    Suryaprakash V, M?ller J, Fettweis G. On the modeling and analysis of heterogeneous radio access networks using a Poisson cluster process. IEEE Trans Wireless Commun, 2015, 14(2): 1035 doi: 10.1109/TWC.2014.2363454
    [58]
    Chun Y J, Hasna M O, Ghrayeb A. Modeling heterogeneous cellular networks interference using Poisson cluster processes. IEEE J Sel Areas Commun, 2015, 33(10): 2182 doi: 10.1109/JSAC.2015.2435271
    [59]
    Deng N, Zhou W Y, Haenggi M. Heterogeneous cellular network models with dependence. IEEE J Sel Areas Commun, 2015, 33(10): 2167 doi: 10.1109/JSAC.2015.2435471
    [60]
    Zhang L, Yang H C, Hasna M O. Generalized area spectral efficiency: an effective performance metric for green wireless communications. IEEE Trans Commun, 2014, 62(2): 747 doi: 10.1109/TCOMM.2013.122913.130138
    [61]
    Hou Y, Laurenson D I. Energy efficiency of high QoS heterogeneous wireless communication network // IEEE 72nd Vehicular Technology Conference. Ottawa, 2010: 1
    [62]
    Ge X H, Yang J, Gharavi H, et al. Energy efficiency challenges of 5G small cell networks. IEEE Commun Mag, 2017, 55(5): 184 doi: 10.1109/MCOM.2017.1600788
    [63]
    Tsilimantos D, Gorce J M, Altman E. Stochastic analysis of energy savings with sleep mode in OFDMA wireless networks // 2013 Proceedings IEEE INFOCOM. Turin, 2013: 1097
    [64]
    Saker L, Elayoubi S E, Combes R, et al. Optimal control of wake up mechanisms of femtocells in heterogeneous networks. IEEE J Sel Areas Commun, 2012, 30(3): 664 doi: 10.1109/JSAC.2012.120415
    [65]
    Dini P, Miozzo M, Bui N, et al. A model to analyze the energy savings of base station sleep mode in LTE HetNets // IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing. Beijing, 2013: 1375
    [66]
    Falconetti L, Hevizi L, Godor I. Sleep mode control for low power nodes in heterogeneous networks // ISWCS 2013; The Tenth International Symposium on Wireless Communication Systems. Ilmenau, 2013: 321
    [67]
    Guo X Y, Niu Z S, Zhou S, et al. Delay-constrained energy-optimal base station sleeping control. IEEE J Sel Areas Commun, 2016, 34(5): 1073 doi: 10.1109/JSAC.2016.2520221
    [68]
    Zhang Y L, Xu Y H, Sun Y M, et al. Energy efficiency of small cell networks: metrics, methods and market. IEEE Access, 2017, 5: 5965 doi: 10.1109/ACCESS.2017.2696025
    [69]
    Kim S, Choi S, Lee B G. A joint algorithm for base station operation and user association in heterogeneous networks. IEEE Commun Lett, 2013, 17(8): 1552 doi: 10.1109/LCOMM.2013.070113.130730
    [70]
    Liu D T, Wang L F, Chen Y, et al. User association in 5G networks: a survey and an outlook. IEEE Commun Surveys Tutorials, 2016, 18(2): 1018 doi: 10.1109/COMST.2016.2516538
    [71]
    Sangiamwong J, Saito Y, Miki N, et al. Investigation on cell selection methods associated with inter-cell interference coordination in heterogeneous networks for LTE-advanced downlink // 17th European Wireless Conference- Sustainable Wireless Technologies. Vienna, 2011: 117
    [72]
    Jo H S, Sang Y J, Xia P, et al. Heterogeneous cellular networks with flexible cell association: a comprehensive downlink SINR analysis. IEEE Trans Wireless Commun, 2012, 11(10): 3484 doi: 10.1109/TWC.2012.081612.111361
    [73]
    Guvenc I. Capacity and fairness analysis of heterogeneous networks with range expansion and interference coordination. IEEE Commun Lett, 2011, 15(10): 1084 doi: 10.1109/LCOMM.2011.082611.111387
    [74]
    Andrews J G. Seven ways that HetNets are a cellular paradigm shift. IEEE Commun Mag, 2013, 51(3): 136 doi: 10.1109/MCOM.2013.6476878
    [75]
    Zhuang B N, Guo D N, Honig M L. Energy-efficient cell activation, user association, and spectrum allocation in heterogeneous networks. IEEE J Sel Areas Commun, 2016, 34(4): 823 doi: 10.1109/JSAC.2016.2544478
    [76]
    Elsawy H, Dahrouj H, Al-Naffouri T Y, et al. Virtualized cognitive network architecture for 5G cellular networks. IEEE Commun Mag, 2015, 53(7): 78 doi: 10.1109/MCOM.2015.7158269
    [77]
    Zhou T Q, Huang Y M, Huang W, et al. QoS-aware user association for load balancing in heterogeneous cellular networks // IEEE 80th Vehicular Technology Conference (VTC2014-Fall). Vancouver, 2014: 1
    [78]
    Shen K M, Yu W. Distributed pricing-based user association for downlink heterogeneous cellular networks. IEEE J Sel Areas Commun, 2014, 32(6): 1100 doi: 10.1109/JSAC.2014.2328143
    [79]
    Zandi M, Dong M, Grami A. Dynamic spectrum access via channel-aware heterogeneous multi-channel auction with distributed learning. IEEE Trans Wireless Commun, 2015, 14(11): 5913 doi: 10.1109/TWC.2015.2444375
    [80]
    Chen X F, Wu J S, Cai Y M, et al. Energy-efficiency oriented traffic offloading in wireless networks: a brief survey and a learning approach for heterogeneous cellular networks. IEEE J Sel Areas Commun, 2015, 33(4): 627 doi: 10.1109/JSAC.2015.2393496
    [81]
    Chen S Z, Qin F, Hu B, et al. User-centric ultra-dense networks for 5G: challenges, methodologies and directions. IEEE Wireless Commun, 2016, 23(2): 78 doi: 10.1109/MWC.2016.7462488
    [82]
    Rao J B, Fapojuwo A O. A survey of energy efficient resource management techniques for multicell cellular networks. IEEE Commun Surveys Tutorials, 2014, 16(1): 154 doi: 10.1109/SURV.2013.042313.00226
    [83]
    Liu J L, Xiao W M. Optimal resource allocation in ultra-dense networks with many carriers // 2015 49th Asilomar Conference on Signals, Systems and Computers. Pacific Grove, 2015: 653
    [84]
    Yao C T, Yang C Y, Xiong Z X. Energy-saving predictive resource planning and allocation. IEEE Trans Commun, 2016, 64(12): 5078 doi: 10.1109/TCOMM.2016.2608822
    [85]
    徐偉嘉, 劉婷婷, 楊晨陽, 等. 超密集網絡中的綠色預測資源分配. 信號處理, 2017, 33(4): 618 https://www.cnki.com.cn/Article/CJFDTOTAL-XXCN201704025.htm

    Xu W J, Liu T T, Yang C Y, et al. Green predictive resource allocation for ultra-dense networks (UDNs). J Signal Process, 2017, 33(4): 618 https://www.cnki.com.cn/Article/CJFDTOTAL-XXCN201704025.htm
    [86]
    Zhou Z Y, Dong M X, Ota K, et al. Energy-efficient context-aware matching for resource allocation in ultra-dense small cells. IEEE Access, 2015, 3: 1849 doi: 10.1109/ACCESS.2015.2478863
    [87]
    Li W, Wang J, Shao Q J, et al. Efficient resource allocation algorithms for energy efficiency maximization in ultra-dense network // GLOBECOM 2017—2017 IEEE Global Communications Conference. Singapore, 2017: 1
    [88]
    Li W C, Zhang J. Cluster-based resource allocation scheme with QoS guarantee in ultra-dense networks. IET Commun, 2018, 12(7): 861 doi: 10.1049/iet-com.2017.1331
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(4)

    Article views (1346) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频