<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 1
Feb.  2020
Turn off MathJax
Article Contents
LIU Pan-pan, LIU Si-qi, GAO Hong-yi, WANG Jing-jing, GAO Zhi-meng, LUO Yu-xin. Preparation and properties of hydroxyapatite aerogel composite phase change materials[J]. Chinese Journal of Engineering, 2020, 42(1): 120-127. doi: 10.13374/j.issn2095-9389.2019.07.29.002
Citation: LIU Pan-pan, LIU Si-qi, GAO Hong-yi, WANG Jing-jing, GAO Zhi-meng, LUO Yu-xin. Preparation and properties of hydroxyapatite aerogel composite phase change materials[J]. Chinese Journal of Engineering, 2020, 42(1): 120-127. doi: 10.13374/j.issn2095-9389.2019.07.29.002

Preparation and properties of hydroxyapatite aerogel composite phase change materials

doi: 10.13374/j.issn2095-9389.2019.07.29.002
More Information
  • Corresponding author: E-mail: hygao2009@163.com
  • Received Date: 2019-07-29
  • Publish Date: 2020-01-01
  • To address energy shortage and environmental pollution, scientists are working to develop methods for the production, conversion, and storage of new energy sources. The development of thermal energy storage (TES) is considered to be one of the most effective energy conservation and environmental protection strategies for utilizing various renewable energy sources. Energy storage technology can solve the contradiction between energy supply and demand in time and space and also improve energy efficiency. Currently, TES includes mainly sensible heat storage, latent heat storage, and thermochemical energy storage. The latent heat TES based on phase change materials (PCMs) is an efficient technology that is being actively pursued owing to high storage density in a small temperature region, which is essential for accelerating new energy development and improving energy efficiency. In this paper, hydroxyapatite aerogels with self-supporting network structure were prepared via a hydrothermal method using calcium oleate as a precursor. Self-supporting hydroxyapatite-based composite phase change materials were synthesized using the impregnation method. The morphology and thermal properties of the prepared composite phase change materials were characterized and tested by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetry, and differential scanning calorimetry. The experimental results show that the composite phase change materials of hydroxyapatite aerogels loaded with octadecanol or paraffin have good thermal properties. The measured values of melting enthalpy and solidified enthalpy of the 60% paraffin@HAP composite phase change materials are 85.10 and 85.30 J·g?1, respectively, and its crystallinity is 81.50%. The measured values of melting enthalpy and solidified enthalpy of the 60% octadecanol@HAP composite phase change material are 113.78 and 112.25 J·g?1, respectively, and its crystallinity is 86.20%. In addition, the composite has good thermal and chemical stability. Furthermore, the hydroxyapatite substrate has the advantages of good flame retardancy, corrosion-free characteristics, safety, and environmental protection, which effectively expands the practical application of phase change materials in the field of intelligent thermal insulation textiles and building materials.

     

  • loading
  • [1]
    Aftab W, Huang X Y, Wu W H, et al. Nanoconfined phase change materials for thermal energy applications. Energy Environ Sci, 2018, 11(6): 1392 doi: 10.1039/C7EE03587J
    [2]
    Gao H Y, Wang J J, Chen X, et al. Nanoconfinement effects on thermal properties of nanoporous shape-stabilized composite PCMs: A review. Nano Energy, 2018, 53: 769 doi: 10.1016/j.nanoen.2018.09.007
    [3]
    Umair M M, Zhang Y A, Iqbal K, et al. Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–a review. Appl Energy, 2019, 235: 846 doi: 10.1016/j.apenergy.2018.11.017
    [4]
    Akhiani A R, Mehrali M, Latibari S T, et al. One-step preparation of form-stable phase change material through self-assembly of fatty acid and graphene. J Phys Chem C, 2015, 119(40): 22787 doi: 10.1021/acs.jpcc.5b06089
    [5]
    Huang X Y, Liu Z P, Xia W, et al. Alkylated phase change composites for thermal energy storage based on surface-modified silica aerogels. J Mater Chem A, 2015, 3(5): 1935 doi: 10.1039/C4TA06735E
    [6]
    Wang J J, Yang M, Lu Y F, et al. Surface functionalization engineering driven crystallization behavior of polyethylene glycol confined in mesoporous silica for shape-stabilized phase change materials. Nano Energy, 2016, 19: 78 doi: 10.1016/j.nanoen.2015.11.001
    [7]
    Chen X, Gao H, Yang M, et al. Smart integration of carbon quantum dots in metal-organic frameworks for fluorescence-functionalized phase change materials. Energy Storage Mater, 2019, 18: 349 doi: 10.1016/j.ensm.2018.08.015
    [8]
    Scaffaro R, Maio A, Lopresti F, et al. Synthesis and self-assembly of a PEGylated-graphene aerogel. Compos Sci Technol, 2016, 128: 193 doi: 10.1016/j.compscitech.2016.03.030
    [9]
    Fang Y T, Zou T, Liang X H, et al. Self-assembly synthesis and properties of microencapsulated n-tetradecane phase change materials with a calcium carbonate shell for cold energy storage. ACS Sustainable Chem Eng, 2017, 5(4): 3074 doi: 10.1021/acssuschemeng.6b02758
    [10]
    Wang W, Wang C Y, Wang T, et al. Enhancing the thermal conductivity of n-eicosane/silica phase change materials by reduced graphene oxide. Mater Chem Phys, 2014, 147(3): 701 doi: 10.1016/j.matchemphys.2014.06.009
    [11]
    Xia Y P, Cui W W, Zhang H Z, et al. Synthesis of three-dimensional graphene aerogel encapsulated n-octadecane for enhancing phase-change behavior and thermal conductivity. J Mater Chem A, 2017, 5(29): 15191 doi: 10.1039/C7TA03432F
    [12]
    Qian T T, Li J H, Ma H W, et al. The preparation of a green shape-stabilized composite phase change material of polyethylene glycol/SiO2 with enhanced thermal performance based on oil shale ash via temperature-assisted sol-gel method. Sol Energy Mater Sol Cells, 2015, 132: 29 doi: 10.1016/j.solmat.2014.08.017
    [13]
    Yang J, Qi G Q, Liu Y, et al. Hybrid graphene aerogels/phase change material composites: thermal conductivity, shape-stabilization and light-to-thermal energy storage. Carbon, 2016, 100: 693 doi: 10.1016/j.carbon.2016.01.063
    [14]
    Chen F, Zhu Y J. Large-scale automated production of highly ordered ultralong hydroxyapatite nanowires and construction of various fire-resistant flexible ordered architectures. ACS Nano, 2016, 10(12): 11483 doi: 10.1021/acsnano.6b07239
    [15]
    Lyu J, Liu Z W, Wu X H, et al. Nanofibrous Kevlar aerogel films and their phase-change composites for highly efficient infrared stealth. ACS Nano, 2019, 13(2): 2236
    [16]
    Zhang Y G, Zhu Y J, Xiong Z C, et al. Bioinspired ultralight inorganic aerogel for highly efficient air filtration and oil-water separation. ACS Appl Mater Interfaces, 2018, 10(15): 13019 doi: 10.1021/acsami.8b02081
    [17]
    Xiong Z C, Yang R L, Zhu Y J, et al. Flexible hydroxyapatite ultralong nanowire-based paper for highly efficient and multifunctional air filtration. J Mater Chem A, 2017, 5(33): 17482 doi: 10.1039/C7TA03870D
    [18]
    鐘麗敏, 楊穆, 欒奕, 等. 石蠟/二氧化硅復合相變材料的制備及其性能. 工程科學學報, 2015, 37(7):936

    Zhong L M, Yang M, Luan Y, et al. Preparation and properties of paraffin/SiO2 composite phase change materials. Chin J Eng, 2015, 37(7): 936
    [19]
    Tang J, Yang M, Yu F, et al. 1-Octadecanol@ hierarchical porous polymer composite as a novel shape-stability phase change material for latent heat thermal energy storage. Appl Energy, 2017, 187: 514 doi: 10.1016/j.apenergy.2016.11.043
    [20]
    Yu H P, Zhu Y J, Lu B Q. Highly efficient and environmentally friendly microwave-assisted hydrothermal rapid synthesis of ultralong hydroxyapatite nanowires. Ceram Int, 2018, 44(11): 12352 doi: 10.1016/j.ceramint.2018.04.022
    [21]
    Han L, Jia X L, Li Z M, et al. Effective encapsulation of paraffin wax in carbon nanotube agglomerates for a new shape-stabilized phase change material with enhanced thermal-storage capacity and stability. Ind Eng Chem Res, 2018, 57(39): 13026 doi: 10.1021/acs.iecr.8b02159
    [22]
    Ayd?n A A. High-chain fatty acid esters of 1-octadecanol as novel organic phase change materials and mathematical correlations for estimating the thermal properties of higher fatty acid esters homologous series. Sol Energy Mater Sol Cells, 2013, 113: 44 doi: 10.1016/j.solmat.2013.01.024
    [23]
    Chen X, Gao H Y, Xing L W, et al. Nanoconfinement effects of N-doped hierarchical carbon on thermal behaviors of organic phase change materials. Energy Storage Mater, 2019, 18: 280 doi: 10.1016/j.ensm.2018.08.024
    [24]
    Qian T T, Li J H, Min X, et al. Integration of pore confinement and hydrogen-bond influence on the crystallization behavior of C18 PCMs in mesoporous silica for form-stable phase change materials. ACS Sustainable Chem Eng, 2018, 6(1): 897 doi: 10.1021/acssuschemeng.7b03267
    [25]
    Chen X, Gao H Y, Yang M, et al. Highly graphitized 3D network carbon for shape-stabilized composite PCMs with superior thermal energy harvesting. Nano Energy, 2018, 49: 86 doi: 10.1016/j.nanoen.2018.03.075
    [26]
    李淑慧, 邵競堯, 張鵬中, 等. 相變儲能微膠囊的制備及其復合材料的研究進展. 應用化工, 2015, 44(5):937

    Li S H, Shao J Y, Zhang P Z, et al. Preparation of micro-encapsulated phase change materials and its composite materials development. Appl Chem Ind, 2015, 44(5): 937
    [27]
    趙思勰, 晏華, 李云濤, 等. 石蠟/硅藻土定型相變材料的結構和熱性能. 材料研究學報, 2017, 31(7):502 doi: 10.11901/1005.3093.2016.640

    Zhao S X, Yan H, Li Y T, et al. Structure and thermal performances of paraffin/diatomite form-stable phase change materials. Chin J Mater Res, 2017, 31(7): 502 doi: 10.11901/1005.3093.2016.640
    [28]
    童曉梅, 郝芹芹, 劉智偉, 等. 氧化石墨烯改性石蠟相變微膠囊的制備及性能研究. 化工新型材料, 2018, 46(5):107

    Tong X M, Hao Q Q, Liu Z W, et al. Preparation and property of paraffin phase change microcapsule modified by graphene oxide. New Chem Mater, 2018, 46(5): 107
    [29]
    邱曉忠. 石蠟/TiO2-P (MMA-co-BA) 相變材料儲能微膠囊的制備和性能研究[學位論文]. 廣州: 華南理工大學, 2018

    Qiu X Z. Synthesis and Charcaterization of Paraffin/TiO2-P (MMA-co-BA) Phase Change Material Microcapsules for Thermal Energy Storage[Dissertation]. Guangzhou: South China University of Technology, 2018
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views (1333) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频