Citation: | LIU Pan-pan, LIU Si-qi, GAO Hong-yi, WANG Jing-jing, GAO Zhi-meng, LUO Yu-xin. Preparation and properties of hydroxyapatite aerogel composite phase change materials[J]. Chinese Journal of Engineering, 2020, 42(1): 120-127. doi: 10.13374/j.issn2095-9389.2019.07.29.002 |
[1] |
Aftab W, Huang X Y, Wu W H, et al. Nanoconfined phase change materials for thermal energy applications. Energy Environ Sci, 2018, 11(6): 1392 doi: 10.1039/C7EE03587J
|
[2] |
Gao H Y, Wang J J, Chen X, et al. Nanoconfinement effects on thermal properties of nanoporous shape-stabilized composite PCMs: A review. Nano Energy, 2018, 53: 769 doi: 10.1016/j.nanoen.2018.09.007
|
[3] |
Umair M M, Zhang Y A, Iqbal K, et al. Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–a review. Appl Energy, 2019, 235: 846 doi: 10.1016/j.apenergy.2018.11.017
|
[4] |
Akhiani A R, Mehrali M, Latibari S T, et al. One-step preparation of form-stable phase change material through self-assembly of fatty acid and graphene. J Phys Chem C, 2015, 119(40): 22787 doi: 10.1021/acs.jpcc.5b06089
|
[5] |
Huang X Y, Liu Z P, Xia W, et al. Alkylated phase change composites for thermal energy storage based on surface-modified silica aerogels. J Mater Chem A, 2015, 3(5): 1935 doi: 10.1039/C4TA06735E
|
[6] |
Wang J J, Yang M, Lu Y F, et al. Surface functionalization engineering driven crystallization behavior of polyethylene glycol confined in mesoporous silica for shape-stabilized phase change materials. Nano Energy, 2016, 19: 78 doi: 10.1016/j.nanoen.2015.11.001
|
[7] |
Chen X, Gao H, Yang M, et al. Smart integration of carbon quantum dots in metal-organic frameworks for fluorescence-functionalized phase change materials. Energy Storage Mater, 2019, 18: 349 doi: 10.1016/j.ensm.2018.08.015
|
[8] |
Scaffaro R, Maio A, Lopresti F, et al. Synthesis and self-assembly of a PEGylated-graphene aerogel. Compos Sci Technol, 2016, 128: 193 doi: 10.1016/j.compscitech.2016.03.030
|
[9] |
Fang Y T, Zou T, Liang X H, et al. Self-assembly synthesis and properties of microencapsulated n-tetradecane phase change materials with a calcium carbonate shell for cold energy storage. ACS Sustainable Chem Eng, 2017, 5(4): 3074 doi: 10.1021/acssuschemeng.6b02758
|
[10] |
Wang W, Wang C Y, Wang T, et al. Enhancing the thermal conductivity of n-eicosane/silica phase change materials by reduced graphene oxide. Mater Chem Phys, 2014, 147(3): 701 doi: 10.1016/j.matchemphys.2014.06.009
|
[11] |
Xia Y P, Cui W W, Zhang H Z, et al. Synthesis of three-dimensional graphene aerogel encapsulated n-octadecane for enhancing phase-change behavior and thermal conductivity. J Mater Chem A, 2017, 5(29): 15191 doi: 10.1039/C7TA03432F
|
[12] |
Qian T T, Li J H, Ma H W, et al. The preparation of a green shape-stabilized composite phase change material of polyethylene glycol/SiO2 with enhanced thermal performance based on oil shale ash via temperature-assisted sol-gel method. Sol Energy Mater Sol Cells, 2015, 132: 29 doi: 10.1016/j.solmat.2014.08.017
|
[13] |
Yang J, Qi G Q, Liu Y, et al. Hybrid graphene aerogels/phase change material composites: thermal conductivity, shape-stabilization and light-to-thermal energy storage. Carbon, 2016, 100: 693 doi: 10.1016/j.carbon.2016.01.063
|
[14] |
Chen F, Zhu Y J. Large-scale automated production of highly ordered ultralong hydroxyapatite nanowires and construction of various fire-resistant flexible ordered architectures. ACS Nano, 2016, 10(12): 11483 doi: 10.1021/acsnano.6b07239
|
[15] |
Lyu J, Liu Z W, Wu X H, et al. Nanofibrous Kevlar aerogel films and their phase-change composites for highly efficient infrared stealth. ACS Nano, 2019, 13(2): 2236
|
[16] |
Zhang Y G, Zhu Y J, Xiong Z C, et al. Bioinspired ultralight inorganic aerogel for highly efficient air filtration and oil-water separation. ACS Appl Mater Interfaces, 2018, 10(15): 13019 doi: 10.1021/acsami.8b02081
|
[17] |
Xiong Z C, Yang R L, Zhu Y J, et al. Flexible hydroxyapatite ultralong nanowire-based paper for highly efficient and multifunctional air filtration. J Mater Chem A, 2017, 5(33): 17482 doi: 10.1039/C7TA03870D
|
[18] |
鐘麗敏, 楊穆, 欒奕, 等. 石蠟/二氧化硅復合相變材料的制備及其性能. 工程科學學報, 2015, 37(7):936
Zhong L M, Yang M, Luan Y, et al. Preparation and properties of paraffin/SiO2 composite phase change materials. Chin J Eng, 2015, 37(7): 936
|
[19] |
Tang J, Yang M, Yu F, et al. 1-Octadecanol@ hierarchical porous polymer composite as a novel shape-stability phase change material for latent heat thermal energy storage. Appl Energy, 2017, 187: 514 doi: 10.1016/j.apenergy.2016.11.043
|
[20] |
Yu H P, Zhu Y J, Lu B Q. Highly efficient and environmentally friendly microwave-assisted hydrothermal rapid synthesis of ultralong hydroxyapatite nanowires. Ceram Int, 2018, 44(11): 12352 doi: 10.1016/j.ceramint.2018.04.022
|
[21] |
Han L, Jia X L, Li Z M, et al. Effective encapsulation of paraffin wax in carbon nanotube agglomerates for a new shape-stabilized phase change material with enhanced thermal-storage capacity and stability. Ind Eng Chem Res, 2018, 57(39): 13026 doi: 10.1021/acs.iecr.8b02159
|
[22] |
Ayd?n A A. High-chain fatty acid esters of 1-octadecanol as novel organic phase change materials and mathematical correlations for estimating the thermal properties of higher fatty acid esters homologous series. Sol Energy Mater Sol Cells, 2013, 113: 44 doi: 10.1016/j.solmat.2013.01.024
|
[23] |
Chen X, Gao H Y, Xing L W, et al. Nanoconfinement effects of N-doped hierarchical carbon on thermal behaviors of organic phase change materials. Energy Storage Mater, 2019, 18: 280 doi: 10.1016/j.ensm.2018.08.024
|
[24] |
Qian T T, Li J H, Min X, et al. Integration of pore confinement and hydrogen-bond influence on the crystallization behavior of C18 PCMs in mesoporous silica for form-stable phase change materials. ACS Sustainable Chem Eng, 2018, 6(1): 897 doi: 10.1021/acssuschemeng.7b03267
|
[25] |
Chen X, Gao H Y, Yang M, et al. Highly graphitized 3D network carbon for shape-stabilized composite PCMs with superior thermal energy harvesting. Nano Energy, 2018, 49: 86 doi: 10.1016/j.nanoen.2018.03.075
|
[26] |
李淑慧, 邵競堯, 張鵬中, 等. 相變儲能微膠囊的制備及其復合材料的研究進展. 應用化工, 2015, 44(5):937
Li S H, Shao J Y, Zhang P Z, et al. Preparation of micro-encapsulated phase change materials and its composite materials development. Appl Chem Ind, 2015, 44(5): 937
|
[27] |
趙思勰, 晏華, 李云濤, 等. 石蠟/硅藻土定型相變材料的結構和熱性能. 材料研究學報, 2017, 31(7):502 doi: 10.11901/1005.3093.2016.640
Zhao S X, Yan H, Li Y T, et al. Structure and thermal performances of paraffin/diatomite form-stable phase change materials. Chin J Mater Res, 2017, 31(7): 502 doi: 10.11901/1005.3093.2016.640
|
[28] |
童曉梅, 郝芹芹, 劉智偉, 等. 氧化石墨烯改性石蠟相變微膠囊的制備及性能研究. 化工新型材料, 2018, 46(5):107
Tong X M, Hao Q Q, Liu Z W, et al. Preparation and property of paraffin phase change microcapsule modified by graphene oxide. New Chem Mater, 2018, 46(5): 107
|
[29] |
邱曉忠. 石蠟/TiO2-P (MMA-co-BA) 相變材料儲能微膠囊的制備和性能研究[學位論文]. 廣州: 華南理工大學, 2018
Qiu X Z. Synthesis and Charcaterization of Paraffin/TiO2-P (MMA-co-BA) Phase Change Material Microcapsules for Thermal Energy Storage[Dissertation]. Guangzhou: South China University of Technology, 2018
|