Citation: | HAI Guang-tong, XUE Xiang-dong, SU Tian-qi, WEI Yong-qiang, GAO Zhi-meng, MA Yu-wei, WANG Jing-jing. Molecular dynamics study on the interaction between metal-organic frameworks and phase change core materials[J]. Chinese Journal of Engineering, 2020, 42(1): 99-105. doi: 10.13374/j.issn2095-9389.2019.07.26.001 |
[1] |
Wuttig M, Yamada N. Phase-change materials for rewriteable data storage. Nat Mater, 2007, 6(11): 824 doi: 10.1038/nmat2009
|
[2] |
Wuttig M. Phase-change materials: Towards a universal memory? Nat Mater, 2005, 4(4): 265 doi: 10.1038/nmat1359
|
[3] |
Shchukina E M, Graham M, Zheng Z, et al. Nanoencapsulation of phase change materials for advanced thermal energy storage systems. Chem Soc Rev, 2018, 47(11): 4156 doi: 10.1039/C8CS00099A
|
[4] |
Zhang M D, Dai Q B, Zheng H G, et al. Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn?air batteries and water splitting. Adv Mater, 2018, 30(10): 1705431 doi: 10.1002/adma.201705431
|
[5] |
Li H, Wang K C, Sun Y J, et al. Recent advances in gas storage and separation using metal-organic frameworks. Mater Today, 2018, 21(2): 108 doi: 10.1016/j.mattod.2017.07.006
|
[6] |
Li C C, Xie B S, Chen D L, et al. Ultrathin graphite sheets stabilized stearic acid as a composite phase change material for thermal energy storage. Energy, 2019, 166: 246 doi: 10.1016/j.energy.2018.10.082
|
[7] |
Sari A, Bicer A, Al-Ahmed A, et al. Silica fume/capric acid-palmitic acid composite phase change material doped with CNTs for thermal energy storage. Sol Energy Mater Sol Cells, 2018, 179: 353 doi: 10.1016/j.solmat.2017.12.036
|
[8] |
Liu Z X, Yu Z, Yang T T, et al. A review on macro-encapsulated phase change material for building envelope applications. Build Environ, 2018, 144: 281 doi: 10.1016/j.buildenv.2018.08.030
|
[9] |
Li M J, Jin B, Ma Z, et al. Experimental and numerical study on the performance of a new high-temperature packed-bed thermal energy storage system with macroencapsulation of molten salt phase change material. Appl Energy, 2018, 221: 1 doi: 10.1016/j.apenergy.2018.03.156
|
[10] |
Wen R L, Zhang W Y, Lv Z F, et al. A novel composite phase change material of stearic acid/carbonized sunflower straw for thermal energy storage. Mater Lett, 2018, 215: 42 doi: 10.1016/j.matlet.2017.12.008
|
[11] |
Luan Y, Yang M, Ma Q Q, et al. Introduction of an organic acid phase changing material into metal-organic frameworks and the study of its thermal properties. J Mater Chem A, 2016, 4(20): 7641 doi: 10.1039/C6TA01676F
|
[12] |
秦勤, 鄧俊超, 臧勇, 等. 熱壓316L/Q345R復合板的結合性能. 工程科學學報, 2018, 40(4):469
Qin Q, Deng J C, Zang Y, et al. Factors influencing the combined performance of hot-rolled bimetallic composite plates prepared via hot compression. Chin J Eng, 2018, 40(4): 469
|
[13] |
王浩宇, 劉應書, 張傳釗, 等. π型向心徑向流吸附器氣?固兩相模型傳熱傳質特性. 工程科學學報, 2019, 41(11):1473
Wang H Y, Liu Y S, Zhang C Z, et al. Heat and mass transfer characteristics of the gas?solid two-phase model in a π-shaped centripetal radial flow adsorber. Chin J Eng, 2019, 41(11): 1473
|
[14] |
李東, 印萬忠, 孫春寶, 等. 赤鐵礦的自載體作用及對浮選的影響. 工程科學學報, 2019, 41(11):1397
Li D, Yin W Z, Sun C B, et al. The self-carrier effect of hematite in the flotation. Chin J Eng, 2019, 41(11): 1397
|