Citation: | YANG Yong, WANG Xin-hua, CHEN Ying-chun, WEI Kai-ling. Corrosion behavior of X100 pipeline steel and its heat-affected zones in simulated Korla soil solution under alternating current interference[J]. Chinese Journal of Engineering, 2020, 42(7): 894-901. doi: 10.13374/j.issn2095-9389.2019.07.21.002 |
[1] |
杜偉, 李鶴林, 王海濤, 等. 國內外高性能油氣輸送管的研發現狀. 油氣儲運, 2016, 35(6):577
Du W, Li H L, Wang H T, et al. Research status of high-performance oil and gas pipelines in China and abroad. Oil Gas Storage Transp, 2016, 35(6): 577
|
[2] |
Witek M. Possibilities of using X80, X100, X120 high-strength steels for onshore gas transmission pipelines. J Nat Gas Sci Eng, 2015, 27: 374 doi: 10.1016/j.jngse.2015.08.074
|
[3] |
Maes M A, Dann M, Salama M M. Influence of grade on the reliability of corroding pipelines. Reliab Eng Syst Saf, 2008, 93(3): 447 doi: 10.1016/j.ress.2006.12.009
|
[4] |
劉成虎, 柳偉, 路民旭. X60鋼及其焊接熱影響區的腐蝕行為對比研究. 中國腐蝕與防護技術, 2008, 20(3):206
Liu C H, Liu W, Lu M X. Comparative study on corrosion behavior of X60 steel and its welding heat-affected zone. Corros Sci Prot Technol, 2008, 20(3): 206
|
[5] |
范舟, 劉建儀, 李士倫, 等. X70管線鋼焊接接頭組織及其海水腐蝕規律. 西南石油大學學報: 自然科學版, 2009, 31(5):171
Fan Z, Liu J Y, Li S L, et al. Microstructure and seawater corrosion to welding joint of X70 pipeline steel. J Southwest Petrol Univ Sci Technol Ed, 2009, 31(5): 171
|
[6] |
Mohammadi F, Eliyan F F, Alfantazi A. Corrosion of simulated weld HAZ of API X-80 pipeline steel. Corros Sci, 2012, 63: 323 doi: 10.1016/j.corsci.2012.06.014
|
[7] |
Zhao W, Zou Y, Zou Z D, et al. The corrosion characterization in simulated heat-affected zones of X80 pipeline steel in near-neutral solution. Int J Electrochem Sci, 2015, 10(11): 9725
|
[8] |
Shi C W, Zhang Y B, Liu P, et al. Effects of second thermal cycles on microstructure and CO2 corrosion behavior of X80 pipeline steel. Int J Electrochem Sci, 2018, 13(3): 2412
|
[9] |
張敏, 李樂, 程康康, 等. X100管線鋼焊接接頭在酸性環境中的腐蝕行為分析. 兵器材料科學與工程, 2018, 41(6):1
Zhang M, Li L, Cheng K K, et al. Corrosion behavior of X100 pipeline steel welded joint in acidic environment. Ordnance Mater Sci Eng, 2018, 41(6): 1
|
[10] |
Eliyan F F, Alfantazi A. Corrosion of the heat-affected zones (HAZs) of API-X100 pipeline steel in dilute bicarbonate solutions at 90 ℃–an electrochemical evaluation. Corros Sci, 2013, 74: 297 doi: 10.1016/j.corsci.2013.05.003
|
[11] |
Eliyan F F, Icre F, Alfantazi A. Passivation of HAZs of API‐X100 pipeline steel in bicarbonate‐carbonate solutions at 298 K. Mater Corros, 2014, 65(12): 1162 doi: 10.1002/maco.201206985
|
[12] |
Papadakis G A. Major hazard pipelines: a comparative study of onshore transmission accidents. J Loss Prev Process Ind, 1999, 12(1): 91 doi: 10.1016/S0950-4230(98)00048-5
|
[13] |
Mustapha A, Charles E A, Hardie D. Evaluation of environment-assisted cracking susceptibility of a grade X100 pipeline steel. Corros Sci, 2012, 54: 5 doi: 10.1016/j.corsci.2011.08.030
|
[14] |
Kulman F E. Effects of alternating currents in causing corrosion. Corrosion, 1961, 17(3): 34 doi: 10.5006/0010-9312-17.3.34
|
[15] |
Gummow R A, Wakelin R G, Segall S M. AC corrosion― ―a new threat to pipeline integrity? // 1996 1st International Pipeline Conference. Calgary, 1996: 443
|
[16] |
符耀慶, 王秀通, 陳勝利. 南朗段埋地天然氣管道雜散電流檢測與治理. 表面技術, 2016, 45(2):22
Fu Y Q, Wang X T, Chen S L. Stray current detection and treatment for buried natural gas pipeline of Nanlang segment. Surf Technol, 2016, 45(2): 22
|
[17] |
Hanson H R, Smart J. AC corrosion on a pipeline located in an HVAC utility corridor // Corrosion 2004. New Orleans, 2004: NACE-04209
|
[18] |
梁平, 杜翠薇, 李曉剛. 庫爾勒土壤模擬溶液的模擬性和加速性研究. 中國腐蝕與防護學報, 2011, 31(2):97
Liang P, Du C W, Li X G. Simulating and accelerating properties of Kuerle soil simulated solution. J Chin Soc Corros Prot, 2011, 31(2): 97
|
[19] |
Goidanich S, Lazzari L, Ormellese M. AC corrosion. Part 2: parameters influencing corrosion rate. Corros Sci, 2010, 52(3): 916 doi: 10.1016/j.corsci.2009.11.012
|
[20] |
Lazzari L, Goidanich S, Ormellese M, et al. Influence of AC on corrosion kinetics for carbon steel, zinc and copper // CORROSION 2005. Houston, Texas, 2005: NACE-05189
|
[21] |
王曉霖, 閆茂成, 舒韻, 等. 破損涂層下管線鋼的交流電干擾腐蝕行為. 中國腐蝕與防護學報, 2017, 37(4):341 doi: 10.11902/1005.4537.2017.118
Wang X L, Yan M C, Shu Y, et al. AC interference corrosion of pipeline steel beneath delaminated coating with holiday. J Chin Soc Corros Prot, 2017, 37(4): 341 doi: 10.11902/1005.4537.2017.118
|
[22] |
Wang X H, Song X T, Chen Y C, et al. Corrosion behavior of X70 and X80 pipeline steels in simulated soil solution. Int J Electrochem Sci, 2018, 13(7): 6436
|
[23] |
Wang X H, Tang X H, Wang L W, et al. Synergistic effect of stray current and stress on corrosion of API X65 steel. J Nat Gas Sci Eng, 2014, 21: 474 doi: 10.1016/j.jngse.2014.09.007
|
[24] |
王新華, 楊國勇, 黃海, 等. 埋地鋼質管道交流雜散電流腐蝕規律研究. 中國腐蝕與防護學報, 2013, 33(4):293
Wang X H, Yang G Y, Huang H, et al. AC stray current corrosion law of buried steel pipeline. J Chin Soc Corros Prot, 2013, 33(4): 293
|
[25] |
萬紅霞, 宋東東, 劉智勇, 等. 交流電對X80鋼在近中性環境中腐蝕行為的影響. 金屬學報, 2017, 53(5):575 doi: 10.11900/0412.1961.2016.00500
Wan H X, Song D D, Liu Z Y, et al. Effect of alternating current on corrosion behavior of X80 pipeline steel in near-neutral environment. Acta Metall Sin, 2017, 53(5): 575 doi: 10.11900/0412.1961.2016.00500
|
[26] |
朱敏, 杜翠薇, 李曉剛, 等. 交流電頻率對X80管線鋼在酸性土壤模擬溶液中腐蝕行為的影響. 中國腐蝕與防護學報, 2014, 34(3):225 doi: 10.11902/1005.4537.2013.127
Zhu M, Du C W, Li X G, et al. Effects of alternating current (AC) frequency on corrosion behavior of X80 pipeline steel in a simulated acid soil solution. J Chin Soc Corros Prot, 2014, 34(3): 225 doi: 10.11902/1005.4537.2013.127
|
[27] |
李學達, 李霞, 王世新, 等. 第二道次焊接熱循環冷卻速度對X100管線鋼臨界再熱粗晶區組織及沖擊性能的影響. 金屬熱處理, 2017, 42(9):66
Li X D, Li X, Wang S X, et al. Influence of cooling rate on microstructure and impact properties of ICCGHAZ of X100 pipeline steel during the second pass thermal cycle. Heat Treat Met, 2017, 42(9): 66
|
[28] |
Lalvani S B, Lin X. A revised model for predicting corrosion of materials induced by alternating voltages. Corros Sci, 1996, 38(10): 1709 doi: 10.1016/S0010-938X(96)00065-0
|
[29] |
Kuang D, Cheng Y F. Understand the AC induced pitting corrosion on pipelines in both high pH and neutral pH carbonate/bicarbonate solutions. Corros Sci, 2014, 85: 304 doi: 10.1016/j.corsci.2014.04.030
|
[30] |
Li M C, Cheng Y F. Mechanistic investigation of hydrogen-enhanced anodic dissolution of X-70 pipe steel and its implication on near-neutral pH SCC of pipelines. Electrochim Acta, 2007, 52(28): 8111 doi: 10.1016/j.electacta.2007.07.015
|