Citation: | PAN Ming, YU Hui-xiang, JI Chen-xi, LIU Yan-qiang, JI Yun-qing. Effect of oxygen blowing during RH treatment on the cleanliness of IF steel[J]. Chinese Journal of Engineering, 2020, 42(7): 846-853. doi: 10.13374/j.issn2095-9389.2019.07.19.002 |
[1] |
王新華. 高品質冷軋薄板鋼中非金屬夾雜物控制技術. 鋼鐵, 2013, 48(9):1
Wang X H. Non-metallic inclusion control technology for high quality cold rolled steel sheets. Iron Steel, 2013, 48(9): 1
|
[2] |
Matsuura H, Wang C, Wen G H, et al. The transient stages of inclusion evolution during Al and/or Ti additions to molten iron. ISIJ Int, 2007, 47(9): 1265 doi: 10.2355/isijinternational.47.1265
|
[3] |
Basu S, Choudhary S K, Girase N U. Nozzle clogging behaviour of Ti-bearing Al-killed ultra low carbon steel. ISIJ Int, 2004, 44(10): 1653 doi: 10.2355/isijinternational.44.1653
|
[4] |
王敏, 包燕平, 楊荃. 鈦合金化過程對鋼液潔凈度的影響. 北京科技大學學報, 2013, 35(6):725
Wang M, Bao Y P, Yang Q. Effect of ferro-titanium alloying process on steel cleanness. J Univ Sci Technol Beijing, 2013, 35(6): 725
|
[5] |
Qin Y M, Wang X H, Li L P, et al. Effect of oxidizing slag on cleanliness of IF steel during ladle holding process. Steel Res Int, 2015, 86(9): 1037 doi: 10.1002/srin.201400349
|
[6] |
崔衡, 陳斌, 王敏, 等. RH精煉過程中IF鋼潔凈度控制. 北京科技大學學報, 2011, 33(增刊1): 147
Cui H, Chen B, Wang M, et al. Cleanliness control of IF steel during the RH refining process. J Univ Sci Technol Beijing, 2011, 33(Suppl1): 147
|
[7] |
王敏, 包燕平, 崔衡, 等. RH純循環對Ti-IF鋼潔凈度的影響. 北京科技大學學報, 2011, 33(12):1448
Wang M, Bao Y P, Cui H, et al. Effect of RH pure circulation on the cleanness of titanium stabilized interstitial-free (Ti-IF) steel. J Univ Sci Technol Beijing, 2011, 33(12): 1448
|
[8] |
袁方明, 王新華, 李宏, 等. 不同澆鑄階段IF鋼連鑄板坯潔凈度. 北京科技大學學報, 2005, 27(4):436 doi: 10.3321/j.issn:1001-053X.2005.04.012
Yuan F M, Wang X H, Li H, et al. Cleanliness of interstitial-free steel slabs produced in different casting stages. J Univ Sci Technol Beijing, 2005, 27(4): 436 doi: 10.3321/j.issn:1001-053X.2005.04.012
|
[9] |
崔衡, 岳峰, 包燕平, 等. IF鋼連鑄頭坯潔凈度研究. 鋼鐵, 2010, 45(3):38
Cui H, Yue F, Bao Y P, et al. Study on cleanliness of IF steel first slab. Iron Steel, 2010, 45(3): 38
|
[10] |
鄧小旋, 王新華, 李林平, 等. 交換鋼包過程對IF鋼連鑄板坯表層潔凈度的影響. 北京科技大學學報, 2014, 36(7):880
Deng X X, Wang X H, Li L P, et al. Effect of ladle change process on the surface cleanliness of IF steel continuous casting slabs. J Univ Sci Technol Beijing, 2014, 36(7): 880
|
[11] |
Zhang Q Y, Wang L T, Wang X H. Influence of casting speed variation during unsteady continuous casting on non-metallic inclusions in IF steel slabs. ISIJ Int, 2006, 46(10): 1421 doi: 10.2355/isijinternational.46.1421
|
[12] |
Kumar A, Choudhary S K, Ajmani S K. Distribution of macroinclusions across slab thickness. ISIJ Int, 2012, 52(12): 2305 doi: 10.2355/isijinternational.52.2305
|
[13] |
劉瀏. RH真空精煉工藝與裝備技術的發展. 鋼鐵, 2006, 41(8):1 doi: 10.3321/j.issn:0449-749X.2006.08.001
Liu L. Development of process and equipment of RH vacuum refinery technology. Iron Steel, 2006, 41(8): 1 doi: 10.3321/j.issn:0449-749X.2006.08.001
|
[14] |
Han C J, Ai L Q, Liu B S, et al. Decarburization mechanism of RH-MFB refining process. J Univ Sci Technol Beijing, 2006, 13(3): 218 doi: 10.1016/S1005-8850(06)60046-7
|
[15] |
Yamaguchi K, Kishimoto Y, Sakuraya T, et al. Effect of refining conditions for ultra low carbon steel on decarburization reaction in RH degasser. ISIJ Int, 1992, 32(1): 126 doi: 10.2355/isijinternational.32.126
|
[16] |
Takahashi M, Matsumoto H, Saito T. Mechanism of decarburization in RH degasser. ISIJ Int, 1995, 35(12): 1452 doi: 10.2355/isijinternational.35.1452
|
[17] |
李崇巍, 成國光, 王新華, 等. RH冶煉超低碳鋼內部脫碳機理及控制工藝. 北京科技大學學報, 2011, 33(3):276
Li C W, Cheng G G, Wang X H, et al. Internal decarburization mechanism and control technology of RH treatment for ultra-low carbon steel. J Univ Sci Technol Beijing, 2011, 33(3): 276
|
[18] |
Park Y G, Yi K W. A new numerical model for predicting carbon concentration during RH degassing treatment. ISIJ Int, 2003, 43(9): 1403 doi: 10.2355/isijinternational.43.1403
|
[19] |
Inoue S, Furuno Y, Usui T, et al. Acceleration of decarburization in RH vacuum degassing process. ISIJ Int, 1992, 32(1): 120 doi: 10.2355/isijinternational.32.120
|
[20] |
Harashima K, Mizoguchi S, Matsuo M, et al. Rates of nitrogen and carbon removal from liquid iron in low content region under reduced pressures. ISIJ Int, 1992, 32(1): 111 doi: 10.2355/isijinternational.32.111
|
[21] |
Liu B S, Zhu G S, Li H X, et al. Decarburization rate of RH refining for ultra low carbon steel. Int J Miner Metall Mater, 2010, 17(1): 22 doi: 10.1007/s12613-010-0104-3
|
[22] |
Doo W C, Kim D Y, Kang S C, et al. The morphology of Al?Ti?O complex oxide inclusions formed in an ultra low-carbon steel melt during the RH process. Met Mater Int, 2007, 13(3): 249 doi: 10.1007/BF03027813
|
[23] |
Hasunuma J, Kurose Y, Hiwasa S, et al. Production of ultra-low carbon steel by K-BOP process at Kawasaki Steel // Steelmaking Conference Proceedings. Detroit, 1990: 91
|
[24] |
Wang M, Bao Y P, Cui H, et al. The composition and morphology evolution of oxide inclusions in Ti-bearing ultra low-carbon steel melt refined in the RH process. ISIJ Int, 2010, 50(11): 1606 doi: 10.2355/isijinternational.50.1606
|
[25] |
張先棹. 冶金傳輸原理. 北京: 冶金工業出版社, 1988
Zhang X Z. Principles of Transport Phenomena in Metallurgy. Beijing: Metallurgical Industry Press, 1988
|
[26] |
Zhong L C, Zeze M, Mukai K. Density of liquid IF steel containing Ti. ISIJ Int, 2005, 45(3): 312 doi: 10.2355/isijinternational.45.312
|
[27] |
Wakoh M, Sano N. Behavior of alumina inclusions just after deoxidation. ISIJ Int, 2007, 47(5): 627 doi: 10.2355/isijinternational.47.627
|