<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 1
Feb.  2020
Turn off MathJax
Article Contents
WANG Jing-jing, XU Xiao-liang, LIANG Kai-yan, WANG Ge. Thermal conductivity enhancement of porous shape-stabilized composite phase change materials for thermal energy storage applications: a review[J]. Chinese Journal of Engineering, 2020, 42(1): 26-38. doi: 10.13374/j.issn2095-9389.2019.07.19.001
Citation: WANG Jing-jing, XU Xiao-liang, LIANG Kai-yan, WANG Ge. Thermal conductivity enhancement of porous shape-stabilized composite phase change materials for thermal energy storage applications: a review[J]. Chinese Journal of Engineering, 2020, 42(1): 26-38. doi: 10.13374/j.issn2095-9389.2019.07.19.001

Thermal conductivity enhancement of porous shape-stabilized composite phase change materials for thermal energy storage applications: a review

doi: 10.13374/j.issn2095-9389.2019.07.19.001
More Information
  • How to realize the efficient use of the renewable energy sources is a present-day challenge to the technologists and has become an important issue in their large scale applications. Energy storage not only reduces the mismatch between supply and demand but also improves the performance and reliability of energy systems and plays an important role in conserving the energy. Current energy storage techniques mainly include sensible heat storage, latent heat storage and chemical reaction heat storage. The researchers place emphasis on the latent heat storage due to its advantages of high heat storage density, little temperature fluctuation and easily controllable utility system. In principle, phase change materials (PCMs) are used for the latent heat storage to absorb and release large amounts of latent heat during their phase change process. Therefore, PCMs are the key factor for the development of latent energy storage technology and play the crucial role in exploring new energy and improving energy utilization. The solid-liquid transition is more efficient compared with the other transformations due to its high latent heat density and small volume change. However, the leakage of solid-liquid PCMs above the melting point from the thermal storage system still hinders their practical applications. Considerable efforts have been devoted to introducing the porous support and development of shape-stabilized composite PCMs to address this technical issue. During the melting or solidifying processes, the PCMs store or release latent heat, while the support materials confine the melted phase from leaking and keep the whole system in the solid state. Moreover, low thermal conductivity of PCMs may degrade the performance for energy storage and thermal regulation during the melting and freezing cycles and restrict their final applications. Therefore, the necessity to enhance thermal conductivity of porous shape-stabilized composite PCMs is evident. In this paper, the recent researches on the enhancement of conductivity of porous shape-stabilized composite PCMs were reviewed. We studied the thermal conductivity enhancement techniques, which included impregnation of PCMs into porous materials with high thermal conductivity, introducing of high conductivity nano-materials and porous support materials into PCMs, construction of hybrid composite for shape stabilized phase change materials. The evaluation of each thermal conductivity enhancement technique was discussed. Finally, we had provided a brief outlook and future challenges in enhancing thermal conductivity of porous shape-stabilized composite PCMs.

     

  • loading
  • [1]
    鐘麗敏, 楊穆, 欒奕, 等. 石蠟/二氧化硅復合相變材料的制備及其性能. 工程科學學報, 2015, 37(7):936

    Zhong L M, Yang M, Luan Y, et al. Preparation and properties of paraffin/SiO2 composite phase change material. Chin J Eng, 2015, 37(7): 936
    [2]
    Li W Q, Hou R F, Wan H, et al. A new strategy for enhanced latent heat energy storage with microencapsulated phase change material saturated in metal foam. Sol Energy Mater Sol Cells, 2017, 171: 197 doi: 10.1016/j.solmat.2017.06.037
    [3]
    Atinafu D G, Dong W J, Huang X B, et al. One-pot synthesis of light-driven polymeric composite phase change materials based on N-doped porous carbon for enhanced latent heat storage capacity and thermal conductivity. Sol Energy Mater Sol Cells, 2018, 179: 392 doi: 10.1016/j.solmat.2018.01.035
    [4]
    Ji H X, Sellan D P, Pettes M T, et al. Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage. Energy Environ Sci, 2014, 7(3): 1185 doi: 10.1039/C3EE42573H
    [5]
    Kenisarin M, Mahkamov K. Passive thermal control in residential buildings using phase change materials. Renewable Sustainable Energy Rev, 2016, 55: 371 doi: 10.1016/j.rser.2015.10.128
    [6]
    Mondal S. Phase change materials for smart textiles-an overview. Appl Therm Eng, 2008, 28(11-12): 1536 doi: 10.1016/j.applthermaleng.2007.08.009
    [7]
    Sharma A, Tyagi V V, Chen C R, et al. Review on thermal energy storage with phase change materials and applications. Renewable Sustainable Energy Rev, 2009, 13(2): 318 doi: 10.1016/j.rser.2007.10.005
    [8]
    Ibrahim N I, Al-Sulaiman F A, Rahman S, et al. Heat transfer enhancement of phase change materials for thermal energy storage applications: a critical review. Renewable Sustainable Energy Rev, 2017, 74: 26 doi: 10.1016/j.rser.2017.01.169
    [9]
    Fleming E, Wen S Y, Shi L, et al. Experimental and theoretical analysis of an aluminum foam enhanced phase change thermal storage unit. Int J Heat Mass Transfer, 2015, 82: 273 doi: 10.1016/j.ijheatmasstransfer.2014.11.022
    [10]
    Zhang P, Meng Z N, Zhu H, et al. Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam. Appl Energy, 2017, 185: 1971 doi: 10.1016/j.apenergy.2015.10.075
    [11]
    祁先進, 王華, 王勝林, 等. 金屬基與熔融鹽復合蓄熱材料的制備與性能研究. 工業加熱, 2005, 34(1):8 doi: 10.3969/j.issn.1002-1639.2005.01.003

    Qi X J, Wang H, Wang S L, et al. Preparation and research of composite heat storage material with metal Ni and molten salts. Ind Heat, 2005, 34(1): 8 doi: 10.3969/j.issn.1002-1639.2005.01.003
    [12]
    盛強, 邢玉明, 王澤. 泡沫金屬復合相變材料的制備與性能分析. 化工學報, 2013, 64(10):3565

    Sheng Q, Xing Y M, Wang Z. Preparation and performance analysis of metal foam composite phase change material. CIESC J, 2013, 64(10): 3565
    [13]
    Xiao X, Zhang P, Li M. Preparation and thermal characterization of paraffin/metal foam composite phase change material. Appl Energy, 2013, 112: 1357 doi: 10.1016/j.apenergy.2013.04.050
    [14]
    張正國, 王學澤, 方曉明. 石蠟/膨脹石墨復合相變材料的結構與熱性能. 華南理工大學學報: 自然科學版, 2006, 34(3):1

    Zhang Z G, Wang X Z, Fang X M. Structure and thermal properties of composite paraffin/expanded graphite phase change material. J South China Univ Technol Nat Sci Ed, 2006, 34(3): 1
    [15]
    Sari A, Karaipekli A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Appl Therm Eng, 2007, 27(8-9): 1271 doi: 10.1016/j.applthermaleng.2006.11.004
    [16]
    Zhong Y J, Li S Z, Wei X H, et al. Heat transfer enhancement of paraffin wax using compressed expanded natural graphite for thermal energy storage. Carbon, 2010, 48(1): 300 doi: 10.1016/j.carbon.2009.09.033
    [17]
    Zhang Z G, Zhang N, Peng J, et al. Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material. Appl Energy, 2012, 91(1): 426 doi: 10.1016/j.apenergy.2011.10.014
    [18]
    Yang X J, Yuan Y P, Zhang N, et al. Preparation and properties of myristic?palmitic?stearic acid/expanded graphite composites as phase change materials for energy storage. Sol Energy, 2014, 99: 259 doi: 10.1016/j.solener.2013.11.021
    [19]
    鄒得球, 馬先鋒, 劉小詩, 等. 石墨烯在相變材料中的研究進展. 化工進展, 2017, 36(5):1743

    Zou D Q, Ma X F, Liu X S, et al. Research progress on graphene in phase change materials. Chem Ind Eng Prog, 2017, 36(5): 1743
    [20]
    Mehrali M, Latibari S T, Mehrali M, et al. Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite. Energy Convers Manage, 2013, 67: 275 doi: 10.1016/j.enconman.2012.11.023
    [21]
    Akhiani A R, Mehrali M, Latibari S T, et al. One-step preparation of form-stable phase change material through self-assembly of fatty acid and graphene. J Phys Chem C, 2015, 119(40): 22787 doi: 10.1021/acs.jpcc.5b06089
    [22]
    Wang C Y, Feng L L, Yang H Z, et al. Graphene oxide stabilized polyethylene glycol for heat storage. Phys Chem Chem Phys, 2012, 14(38): 13233 doi: 10.1039/c2cp41988b
    [23]
    Wang C Y, Wang W, Li G L, et al. The influence of interactions between polyethylene glycol and graphene oxide in shape-stabilized PCMs on their phase change behaviors. Adv Mater Res, 2013, 800: 459 doi: 10.4028/www.scientific.net/AMR.800.459
    [24]
    王崇云, 李國玲, 王維, 等. 載體材料表面性質對定形相變材料相變行為的影響. 沈陽工業大學學報, 2014, 36(1):39 doi: 10.7688/j.issn.1000-1646.2014.01.08

    Wang C Y, Li G L, Wang W, et al. Influence of surface performance of supporting materials on phase change behavior of shape-stabilized phase change materials. J Shenyang Univ Technol, 2014, 36(1): 39 doi: 10.7688/j.issn.1000-1646.2014.01.08
    [25]
    Ye S B, Zhang Q L, Hu D D, et al. Core-shell-like structured graphene aerogel encapsulating paraffin: shape-stable phase change material for thermal energy storage. J Mater Chem A, 2015, 3(7): 4018 doi: 10.1039/C4TA05448B
    [26]
    Zhang L B, Li R Y, Tang B, et al. Solar-thermal conversion and thermal energy storage of graphene foam-based composites. Nanoscale, 2016, 8(30): 14600 doi: 10.1039/C6NR03921A
    [27]
    Meng X, Zhang H Z, Sun L X, et al. Preparation and thermal properties of fatty acids/CNTs composite as shape-stabilized phase change materials. J Therm Anal Calorim, 2013, 111(1): 377 doi: 10.1007/s10973-012-2349-8
    [28]
    Chen L J, Zou R Q, Xia W, et al. Electro-and photodriven phase change composites based on wax-infiltrated carbon nanotube sponges. ACS Nano, 2012, 6(12): 10884 doi: 10.1021/nn304310n
    [29]
    Feng L L, Zhao W, Zheng J, et al. The shape-stabilized phase change materials composed of polyethylene glycol and various mesoporous matrices (AC, SBA-15 and MCM-41). Sol Energy Mater Sol Cells, 2011, 95(12): 3550 doi: 10.1016/j.solmat.2011.08.020
    [30]
    Khadiran T, Hussein M Z, Zainal Z, et al. Activated carbon derived from peat soil as a framework for the preparation of shape-stabilized phase change material. Energy, 2015, 82: 468 doi: 10.1016/j.energy.2015.01.057
    [31]
    Luan Y, Yang M, Ma Q Q, et al. Introduction of an organic acid phase changing material into metal-organic frameworks and the study of its thermal properties. J Mater Chem A, 2016, 4: 7641 doi: 10.1039/C6TA01676F
    [32]
    Tang J, Yang M, Dong W J, et al. Highly porous carbons derived from MOFs for shape-stabilized phase change materials with high storage capacity and thermal conductivity. RSC Adv, 2016, 6(46): 40106 doi: 10.1039/C6RA04059D
    [33]
    Atinafu D G, Dong W J, Hou C M, et al. A facile one-step synthesis of porous N-doped carbon from MOF for efficient thermal energy storage capacity of shape-stabilized phase change materials. Mater Today Energy, 2019, 12: 239 doi: 10.1016/j.mtener.2019.01.011
    [34]
    Chen X, Gao H Y, Yang M, et al. Highly graphitized 3D network carbon for shape-stabilized composite PCMs with superior thermal energy harvesting. Nano Energy, 2018, 49: 86 doi: 10.1016/j.nanoen.2018.03.075
    [35]
    Wang J W, Jia X L, Atinafu D G, et al. Synthesis of “graphene-like” mesoporous carbons for shape-stabilized phase change materials with high loading capacity and improved latent heat. J Mater Chem A, 2017, 5(46): 24321 doi: 10.1039/C7TA05594C
    [36]
    Atinafu D G, Dong W J, Wang C, et al. Synthesis of porous carbon from cotton using an Mg(OH)2 template for form-stabilized phase change materials with high encapsulation capacity, transition enthalpy and reliability. J Mater Chem A, 2018, 6(19): 8969 doi: 10.1039/C8TA01672K
    [37]
    Bi H, Huang H N, Xu F, et al. Carbon microtube/graphene hybrid structures for thermal management applications. J Mater Chem A, 2015, 3(36): 18706 doi: 10.1039/C5TA05115K
    [38]
    Kholmanov I, Kim J, Ou E, et al. Continuous carbon nanotube-ultrathin graphite hybrid foams for increased thermal conductivity and suppressed subcooling in composite phase change materials. ACS Nano, 2015, 9(12): 11699 doi: 10.1021/acsnano.5b02917
    [39]
    Yin Z Y, Huang Z H, Wen R L, et al. Preparation and thermal properties of phase change materials based on paraffin with expanded graphite and carbon foams prepared from sucroses. RSC Adv, 2016, 6(97): 95085 doi: 10.1039/C6RA13758J
    [40]
    Yang J, Qi G Q, Liu Y, et al. Hybrid graphene aerogels/phase change material composites: thermal conductivity, shape stabilization and light to thermal energy storage. Carbon, 2016, 100: 693 doi: 10.1016/j.carbon.2016.01.063
    [41]
    Li A, Dong C, Dong W J, et al. Hierarchical 3D reduced graphene porous-carbon-based PCMs for superior thermal energy storage performance. ACS Appl Mater Interfaces, 2018, 10(38): 32093 doi: 10.1021/acsami.8b09541
    [42]
    Zhang L, Zhou K C, Wei Q P, et al. Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage. Appl Energy, 2019, 233-234: 208 doi: 10.1016/j.apenergy.2018.10.036
    [43]
    Tang B T, Qiu M G, Zhang S F. Thermal conductivity enhancement of PEG/SiO2 composite PCM byin situ Cu doping. Sol Energy Mater Sol Cells, 2012, 105: 242 doi: 10.1016/j.solmat.2012.06.012
    [44]
    Qian T T, Li J H, Min X, et al. Enhanced thermal conductivity of PEG/diatomite shape-stabilized phase change materials with Ag nanoparticles for thermal energy storage. J Mater Chem A, 2015, 3(16): 8526 doi: 10.1039/C5TA00309A
    [45]
    Zhang Y, Wang J S, Qiu J J, et al. Ag-graphene/PEG composite phase change materials for enhancing solar-thermal energy conversion and storage capacity. Appl Energy, 2019, 237: 83 doi: 10.1016/j.apenergy.2018.12.075
    [46]
    Liu C H, Xu Z, Song Y, et al. A novel shape-stabilization strategy for phase change thermal energy storage. J Mater Chem A, 2019, 7(14): 8194 doi: 10.1039/C9TA01496A
    [47]
    Zhou M, Lin T Q, Huang F Q, et al. Highly conductive porous graphene/ceramic composites for heat transfer and thermal energy storage. Adv Funct Mater, 2013, 23(18): 2263 doi: 10.1002/adfm.201202638
    [48]
    Xu B W, Li Z J. Paraffin/diatomite/multi-wall carbon nanotubes composite phase change material tailor-made for thermal energy storage cement-based composites. Energy, 2014, 72: 371 doi: 10.1016/j.energy.2014.05.049
    [49]
    Karaipekli A, Bi?er A, Sari A, et al. Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes. Energy Convers Manage, 2017, 134: 373 doi: 10.1016/j.enconman.2016.12.053
    [50]
    Karaman S, Karaipekli A, Sari A, et al. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage. Sol Energy Mater Sol Cells, 2011, 95(7): 1647 doi: 10.1016/j.solmat.2011.01.022
    [51]
    Wei H T, Li X Q. Preparation and characterization of a lauric-myristic-stearic acid/Al2O3-loaded expanded vermiculite composite phase change material with enhanced thermal conductivity. Sol Energy Mater Sol Cells, 2017, 166: 1
    [52]
    Wang W L, Yang X X, Fang Y T, et al. Enhanced thermal conductivity and thermal performance of form-stable composite phase change materials by using β-aluminum nitride. Appl Energy, 2009, 86(7-8): 1196 doi: 10.1016/j.apenergy.2008.10.020
    [53]
    Wang J J, Huang X B, Gao H Y, et al. Construction of CNT@ Cr?MIL?101?NH2 hybrid composite for shape-stabilized phase change materials with enhanced thermal conductivity. Chem Eng J, 2018, 350: 164 doi: 10.1016/j.cej.2018.05.190
    [54]
    Li A, Wang J J, Dong C, et al. Core-sheath structural carbon materials for integrated enhancement of thermal conductivity and capacity. Appl Energy, 2018, 217: 369 doi: 10.1016/j.apenergy.2017.12.106
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article views (2115) PDF downloads(125) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频