Citation: | ZHANG Zheng-wu, FENG Zhi-peng, CHEN Xiao-wang. Acoustic signal analysis of the resonance frequency region for planetary gearbox fault diagnosis based on high-order synchrosqueezing transform[J]. Chinese Journal of Engineering, 2020, 42(8): 1048-1054. doi: 10.13374/j.issn2095-9389.2019.07.18.002 |
[1] |
張建宇, 吳帥剛, 黃勝軍, 等. 單齒裂紋行星輪系合成剛度的劣化特性. 北京工業大學學報, 2018, 44(2):170
Zhang J Y, Wu S G, Huang S J, et al. Synthetic stiffness degradation behavior of planetary gear set with crack on single tooth. <italic>J Beijing Univ Technol</italic>, 2018, 44(2): 170
|
[2] |
張東, 馮志鵬. 迭代廣義短時Fourier變換在行星齒輪箱故障診斷中的應用. 工程科學學報, 2017, 39(4):604
Zhang D, Feng Z P. Application of iterative generalized short-time Fourier transform to fault diagnosis of planetary gearboxes. <italic>Chin J Eng</italic>, 2017, 39(4): 604
|
[3] |
趙川, 馮志鵬. 基于多域流形的行星齒輪箱局部故障識別. 工程科學學報, 2017, 39(5):769
Zhao C, Feng Z P. Localized fault identification of planetary gearboxes based on multiple-domain manifold. <italic>Chin J Eng</italic>, 2017, 39(5): 769
|
[4] |
陳小旺, 馮志鵬, Liang Ming. 基于迭代廣義同步壓縮變換的時變工況行星齒輪箱故障診斷. 機械工程學報, 2015, 51(1):131 doi: 10.3901/JME.2015.01.131
Chen X W, Feng Z P, Liang M. Planetary gearbox fault diagnosis under time-variant conditions based on iterative generalized synchrosqueezing transform. <italic>J Mech Eng</italic>, 2015, 51(1): 131 doi: 10.3901/JME.2015.01.131
|
[5] |
楊通強, 唐力偉, 鄭海起, 等. 基于聲測法的齒輪箱齒輪故障診斷研究. 軍械工程學院學報, 2000, 12(4):24
Yang T Q, Tang L W, Zheng H Q, et al. Research on diagnosing gear fault of gearbox by acoustic method. <italic>J Ordnance Eng College</italic>, 2000, 12(4): 24
|
[6] |
Lin J. Feature extraction of machine sound using wavelet and its application in fault diagnosis. <italic>NDT </italic>&<italic>E Int</italic>, 2001, 34(1): 25
|
[7] |
Rezaei A, Dadouche A, Wickramasinghe V, et al. A comparison study between acoustic sensors for bearing fault detection under different speed and load using a variety of signal processing techniques. <italic>Tribol Trans</italic>, 2011, 54(2): 179 doi: 10.1080/10402004.2010.533817
|
[8] |
Metwalley S M, Hammad N, Abouel-Seoud S A. Vehicle gearbox fault diagnosis using noise measurements. <italic>Int J Energy Environ</italic>, 2011, 2(2): 357
|
[9] |
Baydar N, Ball A. A comparative study of acoustic and vibration signals in detection of gear failures using Wigner–Ville distribution. <italic>Mech Syst Signal Process</italic>, 2001, 15(6): 1091 doi: 10.1006/mssp.2000.1338
|
[10] |
Feng Z P, Chen X W, Liang M, et al. Time-frequency demodulation analysis based on iterative generalized demodulation for fault diagnosis of planetary gearbox under nonstationary conditions. <italic>Mech Syst Signal Process</italic>, 2015, 62-63: 54 doi: 10.1016/j.ymssp.2015.03.014
|
[11] |
Chen X W, Feng Z P. Application of reassigned wavelet scalogram in wind turbine planetary gearbox fault diagnosis under nonstationary conditions. <italic>Shock Vib</italic>, 2016: 6723267
|
[12] |
Chen X W, Feng Z P. Time-frequency analysis of torsional vibration signals in resonance region for planetary gearbox fault diagnosis under variable speed conditions. <italic>IEEE Access</italic>, 2017, 5: 21918 doi: 10.1109/ACCESS.2017.2763172
|
[13] |
Wang W Y. Early detection of gear tooth cracking using the resonance demodulation technique. <italic>Mech Syst Signal Process</italic>, 2001, 15(5): 887 doi: 10.1006/mssp.2001.1416
|
[14] |
Feng Z P, Liang M, Chu F L. Recent advances in time-frequency analysis methods for machinery fault diagnosis: a review with application examples. <italic>Mech Syst Signal Process</italic>, 2013, 38(1): 165 doi: 10.1016/j.ymssp.2013.01.017
|
[15] |
Hlawatsch F, Auger F. Time-Frequency Analysis: Concepts and Methods. Hoboken: John Wiley & Sons, 2008
|
[16] |
Feng Z P, Chen X W Liang M. Iterative generalized synchrosqueezing transform for fault diagnosis of wind turbine planetary gearbox under nonstationary conditions. <italic>Mech Syst Signal Process</italic>, 2015, 52-53: 360 doi: 10.1016/j.ymssp.2014.07.009
|
[17] |
Martin W, Flandrin P. Wigner–Ville spectral analysis of nonstationary processes. <italic>IEEE Trans Acoust Speech Signal Process</italic>, 1985, 33(6): 1461 doi: 10.1109/TASSP.1985.1164760
|
[18] |
Auger F, Flandrin P. Improving the readability of time-frequency and time-scale representations by the reassignment method. <italic>IEEE Trans Signal Process</italic>, 1995, 43(5): 1068 doi: 10.1109/78.382394
|
[19] |
Daubechies I, Lu J F, Wu H T. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool. <italic>Appl Comput Harmon Anal</italic>, 2011, 30(2): 243 doi: 10.1016/j.acha.2010.08.002
|
[20] |
Yang H Z. Statistical analysis of synchrosqueezed transforms. <italic>Appl Comput Harmon Anal</italic>, 2018, 45(3): 526 doi: 10.1016/j.acha.2017.01.001
|
[21] |
Thakur G, Brevdo E, Fuckar N S, et al. The Synchrosqueezing algorithm for time-varying spectral analysis: robustness properties and new paleoclimate applications. <italic>Signal Process</italic>, 2013, 93(5): 1079 doi: 10.1016/j.sigpro.2012.11.029
|
[22] |
Yang H Z. Robustness analysis of synchrosqueezed transforms. <italic>Statistics</italic>, 2014: 1
|
[23] |
Latsenko D, McClintock P V E, Stefanovska A. Extraction of instantaneous frequencies from ridges in time–frequency representations of signals. <italic>Signal Process</italic>, 2016, 125: 290 doi: 10.1016/j.sigpro.2016.01.024
|
[24] |
Pham D H, Meignen S. High-order synchrosqueezing transform for multicomponent signals analysis—with an application to gravitational-wave signal. <italic>IEEE Trans Signal Process</italic>, 2017, 65(12): 3168 doi: 10.1109/TSP.2017.2686355
|
[25] |
Oberlin T, Meignen S, Perrier V. Second-order synchrosqueezing transform or invertible reassignment? towards ideal time-frequency representations. <italic>IEEE Trans Signal Process</italic>, 2015, 63(5): 1335 doi: 10.1109/TSP.2015.2391077
|