<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 7
Jul.  2020
Turn off MathJax
Article Contents
LI Xiao-li, ZHANG Bo, YANG Xu. Column-generation PM2.5 prediction based on image mixture kernel[J]. Chinese Journal of Engineering, 2020, 42(7): 922-929. doi: 10.13374/j.issn2095-9389.2019.07.15.002
Citation: LI Xiao-li, ZHANG Bo, YANG Xu. Column-generation PM2.5 prediction based on image mixture kernel[J]. Chinese Journal of Engineering, 2020, 42(7): 922-929. doi: 10.13374/j.issn2095-9389.2019.07.15.002

Column-generation PM2.5 prediction based on image mixture kernel

doi: 10.13374/j.issn2095-9389.2019.07.15.002
More Information
  • Corresponding author: E-mail: yangxu@ustb.edu.cn
  • Received Date: 2019-07-15
  • Publish Date: 2020-07-01
  • The conventional method of PM2.5 prediction requires high-precision instruments to obtain data on the concentration of pollutants, resulting in a high prediction costs. In this work, we attempt to use image data to estimate PM2.5 concentration. The concentration of atmospheric PM2.5 is closely linked to the image’s dark channel intensity, contrast, and color difference of HSI. The increase in atmospheric PM2.5 concentration leads to a decrease in the non-sky area dark channel intensity, image contrast, and HSI spatial color difference. In this paper, a Column-Generation PM2.5 prediction model based on image mixture kernel was proposed by analyzing the relationship between PM2.5 and image features. First, the sampling period was taken as 1 h, and 8:00–17:00 was taken as the sampling range daily. The scene images were recorded in different weather conditions, and five image features were extracted, including contrast, dark channel intensity, and HSI color difference. Secondly, the image data has the characteristics of large sample size and uneven distribution, and the prediction model consists of a single kernel function, which makes it difficult to meet the prediction accuracy requirement. Therefore, the linear kernel function, polynomial kernel function, and Gauss kernel function were chosen to construct a composite model according to the concept of kernel structure from simple to complex. Then each kernel's Gram matrix was calculated based on training samples, and all gram matrices were placed into a mixture kernel matrix. Using the column generation algorithm and mixture kernel matrix, the prediction model was developed and the parameters of the model were solved. Finally, simulation experiments were performed; the results show that the prediction model based on the image mixture kernel of Column-Generation PM2.5 can meet the prediction accuracy requirements. The model has higher prediction accuracy and better model stability in comparison with the single-kernel prediction model. A computational complexity analysis shows that the prediction model based on the image mixture kernel of column-generation PM2.5 has no significant increase in computational complexity in comparison with the one-kernel prediction model.

     

  • loading
  • [1]
    張熙來, 趙儉輝, 蔡波. 針對PM2.5單時間序列數據的動態調整預測模型. 自動化學報, 2018, 44(10):1790

    Zhang X L, Zhao J H, Cai B. Prediction model with dynamic adjustment for single time series of PM2.5. Acta Automatica Sinica, 2018, 44(10): 1790
    [2]
    Zhan Y, Luo Y Z, Deng X F, et al. Spatiotemporal prediction of continuous daily PM2.5, concentrations across China using a spatially explicit machine learning algorithm. Atmos Environ, 2017, 155: 129 doi: 10.1016/j.atmosenv.2017.02.023
    [3]
    Sun W, Sun J Y. Daily PM2.5 concentration prediction based on principal component analysis and LSSVM optimized by cuckoo search algorithm. J Environ Manage, 2016, 188: 144
    [4]
    曲悅, 錢旭, 宋洪慶, 等. 基于機器學習的北京市PM2.5濃度預測模型及模擬分析. 工程科學學報, 2019, 41(3):401

    Qu Y, Qian X, Song H Q, et al. Machine-learning-based model and simulation analysis of PM2.5 concentration prediction in Beijing. Chin J Eng, 2019, 41(3): 401
    [5]
    Russo A, Raischel F, Lind P G. Air quality prediction using optimal neural networks with stochastic variables. Atmos Environ, 2013, 79: 822 doi: 10.1016/j.atmosenv.2013.07.072
    [6]
    李建更, 羅奧榮, 李曉理. 基于互補集合經驗模態分解與支持向量回歸的PM2.5質量濃度預測. 北京工業大學學報, 2018, 44(12):1494

    Li J G, Luo A R, Li X L. Prediction of PM2.5 mass concentration based on complementary ensemble empirical mode decomposition and support vector regression. J Beijing Univ Technol, 2018, 44(12): 1494
    [7]
    Liu C B, Tsow F, Zou Y, et al. Particle pollution estimation based on image analysis. PloS One, 2016, 11(2): e0145955 doi: 10.1371/journal.pone.0145955
    [8]
    Gu K, Qiao J F, Li X L. Highly efficient picture-based prediction of PM2.5 concentration. IEEE Trans Ind Electron, 2019, 66(4): 3176 doi: 10.1109/TIE.2018.2840515
    [9]
    李曉理, 張山, 王康. 基于圖像質量分析的PM2.5空氣質量預測. 北京工業大學學報, 2020, 46(2):191

    Li X L, Zhang S, Wang K. PM2.5 air quality prediction based on image quality analysis. J Beijing Univ Technol, 2020, 46(2): 191
    [10]
    汪洪橋, 孫富春, 蔡艷寧, 等. 多核學習方法. 自動化學報, 2010, 36(8):1037 doi: 10.3724/SP.J.1004.2010.01037

    Wang H Q, Sun F C, Cai Y N, et al. On multiple kernel learning methods. Acta Autom Sin, 2010, 36(8): 1037 doi: 10.3724/SP.J.1004.2010.01037
    [11]
    Fink M, Desaulniers G, Frey M, et al. Column generation for vehicle routing problems with multiple synchronization constraints. Eur J Oper Res, 2019, 272(2): 699 doi: 10.1016/j.ejor.2018.06.046
    [12]
    李航. 統計學習方法. 北京: 清華大學出版社, 2012

    Li H. Statistical Learning Method. Beijing: Tsinghua University Press, 2012
    [13]
    Demiriz A, Bennett K P, Shawe-Taylor J. Linear programming boosting via column generation. Mach Learn, 2002, 46(1-3): 225
    [14]
    Bi J B, Zhang T, Bennett K P. Column-generation boosting methods for mixture of kernels//Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Seattle, 2004: 521
    [15]
    Vapnik V. The Nature of Statistical Learning Theory. Springer Science & Business Media, 2013
    [16]
    Berman D, Treibitz T, Avidan S. Single image dehazing using haze-lines. IEEE Trans Pattern Anal Mach Intell, 2018, 42(3): 720
    [17]
    Seinfeld J H, Pandis S N. Atmospheric Chemistry and Physics: from Air Pollution to Climate Change. John Wiley & Sons, 2016
    [18]
    Graves N, Newsam S. Camera-based visibility estimation: Incorporating multiple regions and unlabeled observations. Ecol Inform, 2014, 23: 62 doi: 10.1016/j.ecoinf.2013.08.005
    [19]
    He K M, Sun J, Tang X O. Single image haze removal using dark channel prior. IEEE Trans Pattern Anal Mach Intell, 2011, 33(12): 2341 doi: 10.1109/TPAMI.2010.168
    [20]
    Kim K W, Kim Y J. Perceived visibility measurement using the HSI color difference method. J Korean Phys Soc, 2005, 46(5): 1243
    [21]
    袁立, 穆志純, 劉磊明. 基于核主元分析法和支持向量機的人耳識別. 北京科技大學學報, 2006, 28(9):890 doi: 10.3321/j.issn:1001-053X.2006.09.019

    Yuan L, Mu Z C, Liu L M. Ear recognition based on kernel principal component analysis and support vector machine. J Univ Sci Technol Beijing, 2006, 28(9): 890 doi: 10.3321/j.issn:1001-053X.2006.09.019
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article views (1101) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频