Citation: | WANG Jing-jing, ZHAO Hong-liang, HU Tao, LIU Feng-qin. High-performance anode materials based on anthracite for lithium-ion battery applications[J]. Chinese Journal of Engineering, 2020, 42(7): 884-893. doi: 10.13374/j.issn2095-9389.2019.07.11.005 |
[1] |
Griffiths G. Review of developments in lithium secondary battery technology. Underwater Technol, 2016, 33(3): 153 doi: 10.3723/ut.33.153
|
[2] |
Mekonnen Y, Sundararajan A, Sarwat A I. A review of cathode and anode materials for lithium-ion batteries//SoutheastCon 2016. Norfolk, 2016: 1
|
[3] |
Nitta N, Wu F X, Lee J T, et al. Li-ion battery materials: present and future. Mater Today, 2015, 18(5): 252 doi: 10.1016/j.mattod.2014.10.040
|
[4] |
Mahmood N, Tang T Y, Hou Y L. Nanostructured anode materials for lithium ion batteries: progress, challenge and perspective. Adv Energy Mater, 2016, 6(17): 1600374 doi: 10.1002/aenm.201600374
|
[5] |
Kim Y J, Yang H, Yoon S H, et al. Anthracite as a candidate for lithium ion battery anode. J Power Sources, 2003, 113(1): 157 doi: 10.1016/S0378-7753(02)00528-1
|
[6] |
Cameán I, Lavela P, Tirado J L, et al. On the electrochemical performance of anthracite-based graphite materials as anodes in lithium-ion batteries. Fuel, 2010, 89(5): 986 doi: 10.1016/j.fuel.2009.06.034
|
[7] |
Zhou X Y, Ma L L, Yang J, et al. Properties of graphitized boron-doped coal-based coke powders as anode for lithium-ion batteries. J Electroanal Chem, 2013, 698: 39 doi: 10.1016/j.jelechem.2013.03.019
|
[8] |
Xing B L, Zhang C T, Cao Y J, et al. Preparation of synthetic graphite from bituminous coal as anode materials for high performance lithium-ion batteries. Fuel Process Technol, 2018, 172: 162 doi: 10.1016/j.fuproc.2017.12.018
|
[9] |
Xiao J, Li F C, Zhong Q F, et al. Effect of high-temperature pyrolysis on the structure and properties of coal and petroleum coke. J Anal Appl Pyrol, 2016, 117: 64 doi: 10.1016/j.jaap.2015.12.015
|
[10] |
Liu X X, Luo J, Zhu Y T, et al. Removal of methylene blue from aqueous solutions by an adsorbent based on metal-organic framework and polyoxometalate. J Alloys Compd, 2015, 648: 986 doi: 10.1016/j.jallcom.2015.07.065
|
[11] |
Tian B, Li P F, Li D W, et al. Preparation of micro-porous monolithic activated carbon from anthracite coal using coal tar pitch as binder. J Porous Mater, 2017, 25(4): 1
|
[12] |
Wu X, Yang X L, Zhang F, et al. Carbon-coated isotropic natural graphite spheres as anode material for lithium-ion batteries. Ceram Int, 2017, 43(12): 9458 doi: 10.1016/j.ceramint.2017.04.123
|
[13] |
H?gstr?m K C, Malmgren S, Hahlin M, et al. The buried carbon/solid electrolyte interphase in Li-ion batteries studied by hard X-ray photoelectron spectroscopy. Electrochim Acta, 2014, 138: 430 doi: 10.1016/j.electacta.2014.06.129
|
[14] |
Ramos A, Cameán I, Cuesta N, et al. Graphitized stacked-cup carbon nanofibers as anode materials for lithium-ion batteries. Electrochim Acta, 2014, 146: 769 doi: 10.1016/j.electacta.2014.09.035
|
[15] |
Tian M, Wang W, Liu Y, et al. A three-dimensional carbon nano-network for high performance lithium ion batteries. Nano Energy, 2015, 11: 500 doi: 10.1016/j.nanoen.2014.11.006
|
[16] |
Verma P, Maire P, Novák P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta, 2010, 55(22): 6332 doi: 10.1016/j.electacta.2010.05.072
|
[17] |
Jung K N, Pyun S I. Effect of pore structure on anomalous behaviour of the lithium intercalation into porous V2O5 film electrode using fractal geometry concept. Electrochim Acta, 2006, 51(13): 2646 doi: 10.1016/j.electacta.2005.08.008
|
[18] |
Cameán I, Garcia A B. Graphite materials prepared by HTT of unburned carbon from coal combustion fly ashes: Performance as anodes in lithium-ion batteries. J Power Sources, 2011, 196(10): 4816 doi: 10.1016/j.jpowsour.2011.01.041
|
[19] |
Wang C, Zhao H, Wang J, et al. Electrochemical performance of modified artificial graphite as anode material for lithium ion batteries. Ionics, 2013, 19(2): 221
|