<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 2
Feb.  2020
Turn off MathJax
Article Contents
WANG Jun, LEI Yu, LIU Xin-hua, XIE Guo-liang, JIANG Yan-qing, ZHANG Shuai. Microstructure and properties of Cu–Al-laminated composites fabricated via formation of a horizontal continuous casting composite[J]. Chinese Journal of Engineering, 2020, 42(2): 216-224. doi: 10.13374/j.issn2095-9389.2019.07.08.005
Citation: WANG Jun, LEI Yu, LIU Xin-hua, XIE Guo-liang, JIANG Yan-qing, ZHANG Shuai. Microstructure and properties of Cu–Al-laminated composites fabricated via formation of a horizontal continuous casting composite[J]. Chinese Journal of Engineering, 2020, 42(2): 216-224. doi: 10.13374/j.issn2095-9389.2019.07.08.005

Microstructure and properties of Cu–Al-laminated composites fabricated via formation of a horizontal continuous casting composite

doi: 10.13374/j.issn2095-9389.2019.07.08.005
More Information
  • Corresponding author: E-mail: Liuxinhua18@163.com
  • Received Date: 2019-07-08
  • Publish Date: 2020-02-01
  • With the advantages of both Cu and Al, including high conductivity, good corrosion resistance, low density, and easy connectivity, Cu–Al-laminated composites become a substitute for copper plates which can be applied widely in the fields of telecommunication, the petrochemical industry, transportation, decorative buildings, and the aerospace, national defense, and military industries. Cu–Al-laminated composites can be prepared via various methods, such as the explosive combined method, rolling combined method, and cast-rolling combined method. However, all these methods are limited because of the complicated metal surface treatment which poses a restriction on the development of this kind of plate. To resolve this issue, a new process of horizontal continuous casting composite forming (HCCF) for bimetal composite plates with an interface of metallurgical bonding, which is regarded as a short and more efficient process, was presented in this paper. Cu–Al composite plates with a section size of 70 mm × 24 mm (width × thickness) were fabricated, whose feasible preparation parameters were further studied, along with the investigation of the microstructure and properties of the composite plate. The results show that consisting of intermetallic compounds and eutectic phase, an interfacial layer is formed during the preparation and formation of the Cu–Al composite plate. Layer II of θ is formed via a solid–liquid transition during the solidification of liquid Al on the solid Cu plate. With the Cu atoms continuously diffusing into the Al liquid, layer I of γ is formed via a solid–solid transition with a certain content of Cu atoms, while layer III of α + θ is formed via eutectic transformation under the eutectic temperature. Making of Cu–Al intermetallic compounds, Layer I and layer II are the main areas of crack generation and expansion, thus, the thickness of the interface layer plays an important role that can control bonding strength. The temperature distribution of the composite Cu–Al plate during solidification is optimized by adjusting the parameters and controlling the formation of the composite layer. Therefore, a reasonable matching of the process parameters is the key to improving the microstructure of the composite layer and increasing the bond strength of the clad plate.

     

  • loading
  • [1]
    劉騰, 劉平, 王渠東. 銅鋁雙金屬復合材料的研究進展. 材料導報, 2013, 27(10):1 doi: 10.3969/j.issn.1005-023X.2013.10.001

    Liu T, Liu P, Wang Q D. Research progress on copper/aluminum bimetal composite. Mater Rev, 2013, 27(10): 1 doi: 10.3969/j.issn.1005-023X.2013.10.001
    [2]
    田捍衛, 王愛琴, 劉帥洋, 等. 銅鋁層狀復合材料的研究進展. 材料科學與工程學報, 2019, 37(1):167

    Tian H W, Wang A Q, Liu S Y, et al. Research progress on copper?aluminum laminated composites. J Mater Sci Eng, 2019, 37(1): 167
    [3]
    劉帥洋, 王愛琴, 呂世敬, 等. 銅鋁層狀復合材料界面特性及深加工研究進展. 材料導報, 2018, 32(3):828

    Liu S Y, Wang A Q, Lü S J, et al. Interfacial properties and further processing of Cu/Al laminated composite: A review. Mater Rev, 2018, 32(3): 828
    [4]
    吳霖, 吳鐘平, 孟春旅, 等. 一種新型低壓接戶線銅鋁過渡金具的應用研究. 廣東科技, 2014, 1(2):53 doi: 10.3969/j.issn.1006-5423.2014.02.028

    Wu L, Wu Z P, Meng C L, et al. Study on application of a new type of copper?aluminum transition fittings for low voltage wiring. Guangdong Sci Technol, 2014, 1(2): 53 doi: 10.3969/j.issn.1006-5423.2014.02.028
    [5]
    Athar M M H, Tolaminejad B. Weldability window and the effect of interface morphology on the properties of Al/Cu/Al laminated composites fabricated by explosive welding. Mater Des, 2015, 86: 516 doi: 10.1016/j.matdes.2015.07.114
    [6]
    陳勇富, 陳崗, 熊少非. 銅?鋁爆炸焊接?軋制復合板及其應用. 輕合金加工技術, 1996, 24(11):37

    Chen F Y, Chen G, Xiong S F. Explosive welding-rolling composite plate of copper?aluminum and its application. Light Alloy Fabrication Technol, 1996, 24(11): 37
    [7]
    陳明, 萬小勇, 董亭義, 等. 高純鋁與銅爆炸焊接性能分析. 有色金屬(冶煉部分), 2014(5):56

    Chen M, Wan X Y, Dong T Y, et al. Performance analysis on interlayer of high purity aluminum and copper bonded by explosive welding. Nonferrous Met (Extr Metall), 2014(5): 56
    [8]
    Wang T, Li S, Ren Z K, et al. A novel approach for preparing Cu/Al laminated composite based on corrugated roll. Meter Lett, 2019, 234: 79 doi: 10.1016/j.matlet.2018.09.060
    [9]
    Li L, Nagai K, Yin F X. Progress in cold roll bonding of metals. Sci Technol Adv Mater, 2008, 9(2): 23001 doi: 10.1088/1468-6996/9/2/023001
    [10]
    Li X B, Zu G Y, Wang P. Microstructural development and its effects on mechanical properties of Al/Cu laminated composite. Trans Nonferrous Met Soc China, 2015, 25(1): 36 doi: 10.1016/S1003-6326(15)63576-2
    [11]
    Jiang Y, Peng D S, Lu D, et al. Analysis of clad sheet bonding by cold rolling. J Mater Process Technol, 2000, 105(1-2): 32 doi: 10.1016/S0924-0136(00)00553-7
    [12]
    胡捷. 銅包鋁復合線材靜液擠壓加工工藝研究. 新技術新工藝, 2001(9):27 doi: 10.3969/j.issn.1003-5311.2001.09.014

    Hu J. The study to produce copper fold aluminium composite wire by hydraulic extrusion. New Technol New Process, 2001(9): 27 doi: 10.3969/j.issn.1003-5311.2001.09.014
    [13]
    婁敏軒, 劉新華, 姜雁斌, 等. 銅包鋁絲材的旋鍛復合-拉拔成形與組織性能. 工程科學學報, 2018, 40(11):1358

    Lou M X, Liu X H, Jiang Y B, et al. Rotary swaging-drawing formation, microstructure, and properties of copper-clad aluminium composite micro-wires. Chin J Eng, 2018, 40(11): 1358
    [14]
    Liu S Y, Wang A Q, Tian H W, et al. The synergetic tensile deformation behaviour of Cu/Al laminated composites prepared by twin-roll casting technology. Mater Res Express, 2018, 6(1): 016530 doi: 10.1088/2053-1591/aae630
    [15]
    路王珂, 謝敬佩, 王愛琴, 等. 退火溫度對銅鋁鑄軋復合板界面組織和力學性能的影響. 機械工程材料, 2014, 38(3):14

    Lu W K, Xie J P, Wang A Q, et al. Effects of annealing temperature on interfacial microstructure and mechanical properties of Cu/Al roll-casted composite plate. Mater Mech Eng, 2014, 38(3): 14
    [16]
    謝建新. 新材料加工新技術與新工藝. 北京: 冶金工業出版社, 2004

    Xie J X. Advanced Processing Technologies of Materials. Beijing: Metallurgical Industry Press, 2004
    [17]
    吳永福, 劉新華, 謝建新, 等. 矩形斷面銅包鋁復合材料的水平連鑄直接復合成形. 中國有色金屬學報, 2012, 22(9):2500

    Wu Y F, Liu X H, Xie J X, et al. Copper cladding aluminum composite materials with rectangle section fabricated by horizontal core-filling continuous casting. Chin J Nonferrous Met, 2012, 22(9): 2500
    [18]
    Su Y J, Liu X H, Huang H Y, et al. Effects of processing parameters on the fabrication of copper cladding aluminum rods by horizontal core-filling continuous casting. Metall Mater Trans B, 2011, 42(1): 104 doi: 10.1007/s11663-010-9449-2
    [19]
    Chen S Y, Chang G W, Yue X D, et al. Solidification process and microstructure of transition layer of Cu?Al composite cast prepared by method of pouring molten aluminum. Trans Nonferrous Met Soc China, 2016, 26(8): 2247 doi: 10.1016/S1003-6326(16)64343-1
    [20]
    吳永福, 劉新華, 謝建新. 連鑄直接成形矩形斷面銅包鋁復合材料界面及其在軋制中的變化. 中國有色金屬學報, 2013, 23(1):191

    Wu Y F, Liu X H, Xie J X. Interface of copper cladding aluminum composite materials with rectangle section fabricated by horizontal core-filling continuous casting and its evolvement in rolling process. Chin J Nonferrous Met, 2013, 23(1): 191
    [21]
    Su Y J, Liu X H, Huang H Y, et al. Interfacial microstructure and bonding strength of copper cladding aluminum rods fabricated by horizontal core-filling continuous casting. Metall Mater Trans A, 2011, 42(13): 4088 doi: 10.1007/s11661-011-0785-x
    [22]
    Tavassoli S, Abbasi M, Tahavvori R. Controlling of IMCs layer formation sequence, bond strength and electrical resistance in Al?Cu bimetal compound casting process. Mater Des, 2016, 108: 343 doi: 10.1016/j.matdes.2016.06.076
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article views (1817) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频