Citation: | YANG Tao, FENG Jiao, CHEN Jun-hong, CHOU Kuo-Chih, HOU Xin-mei. Electrochemical detection of dopamine and uric acid using a titanium nitride-graphene composite sensor[J]. Chinese Journal of Engineering, 2019, 41(12): 1536-1542. doi: 10.13374/j.issn2095-9389.2019.07.04.034 |
[1] |
Bagheri H, Pajooheshpour N, Jamali B, et al. A novel electrochemical platform for sensitive and simultaneous determination of dopamine, uric acid and ascorbic acid based on Fe3O4?SnO2?Gr ternary nanocomposite. Microchem J, 2017, 131: 120 doi: 10.1016/j.microc.2016.12.006
|
[2] |
Ping J F, Wu J, Wang Y X, et al. Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode. Biosens Bioelectron, 2012, 34(1): 70 doi: 10.1016/j.bios.2012.01.016
|
[3] |
Zhao L W, Li H J, Gao S M, et al. MgO nanobelt-modified graphene-tantalum wire electrode for the simultaneous determination of ascorbic acid, dopamine and uric acid. Electrochim Acta, 2015, 168: 191 doi: 10.1016/j.electacta.2015.03.215
|
[4] |
Wang H Y, Hui Q S, Xu L X, et al. Fluorimetric determination of dopamine in pharmaceutical products and urine using ethylene diamine as the fluorigenic reagent. Anal Chim Acta, 2003, 497(1-2): 93 doi: 10.1016/j.aca.2003.08.050
|
[5] |
Wang J, Chatrathi M P, Tian B M, et al. Microfabricated electrophoresis chips for simultaneous bioassays of glucose, uric acid, ascorbic acid, and acetaminophen. Anal Chem, 2000, 72(11): 2514 doi: 10.1021/ac991489l
|
[6] |
Liu X, Jiang H, Lei J P, et al. Anodic electrochemiluminescence of CdTe quantum dots and its energy transfer for detection of catechol derivatives. Anal Chem, 2007, 79(21): 8055 doi: 10.1021/ac070927i
|
[7] |
Ren X, Zhang T, Wu D, et al. Increased electrocatalyzed performance through high content potassium doped graphene matrix and aptamer tri infinite amplification labels strategy: highly sensitive for matrix metalloproteinases-2 detection. Biosens Bioelectron, 2017, 94: 694 doi: 10.1016/j.bios.2017.03.064
|
[8] |
Zhou S H, Shi H Y, Feng X, et al. Design of templated nanoporous carbon electrode materials with substantial high specific surface area for simultaneous determination of biomolecules. Biosens Bioelectron, 2013, 42: 163 doi: 10.1016/j.bios.2012.10.043
|
[9] |
Darmawan W, Usuki H, Rahayu I S, et al. Wear characteristics of multilayer-coated cutting tools when milling particleboard. Forest Prod J, 2010, 60(7-8): 615
|
[10] |
Zahid R, Masjuki H H, Varman M, et al. Effect of lubricant formulations on the tribological performance of self-mated doped DLC contacts: a review. Tribol Lett, 2015, 58(2): 32 doi: 10.1007/s11249-015-0506-5
|
[11] |
Kaskel S, Schlichte K, Kratzke T. Catalytic properties of high surface area titanium nitride materials. J Mol Catal A-Chem, 2004, 208(1-2): 291 doi: 10.1016/S1381-1169(03)00545-4
|
[12] |
Choi D, Kumta P N. Nanocrystalline TiN derived by a two-step halide approach for electrochemical capacitors. J Electrochem Soc, 2006, 153(12): A2298 doi: 10.1149/1.2359692
|
[13] |
Cui Z M, Zu C X, Zhou W D, et al. Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries. Adv Mater, 2016, 28(32): 6926 doi: 10.1002/adma.201601382
|
[14] |
Dong S M, Chen X, Gu L, et al. A biocompatible titanium nitride nanorods derived nanostructured electrode for biosensing and bioelectrochemical energy conversion. Biosens Bioelectron, 2011, 26(10): 4088 doi: 10.1016/j.bios.2011.03.040
|
[15] |
Kong F Y, Gu S X, Wang J Y, et al. Facile green synthesis of graphene-titanium nitride hybrid nanostructure for the simultaneous determination of acetaminophen and 4-aminophenol. Sens Actuators B, 2015, 213: 397 doi: 10.1016/j.snb.2015.02.120
|
[16] |
Zhu J X, Yang D, Yin Z Y, et al. Graphene and graphene-based materials for energy storage applications. Small, 2014, 10(17): 3480 doi: 10.1002/smll.201303202
|
[17] |
林軒宇, 張虹, 黃碩, 等. 氧化鋅納米線陣列/泡沫石墨烯電化學檢測左旋多巴. 工程科學學報, 2016, 38(9):1306
Lin X Y, Zhang H, Huang S, et al. Electrochemical determination of levodopa using ZnO nanowire arrays/graphene foam. Chin J Eng, 2016, 38(9): 1306
|
[18] |
周龍斐, 邱紅梅, 徐美, 等. 石墨烯/二氧化錳復合材料的制備及其電化學性能. 工程科學學報, 2016, 38(9):1300
Zhou L F, Qiu H M, Xu M, et al. Synthesis and electrochemical properties of graphene/MnO2 composites. Chin J Eng, 2016, 38(9): 1300
|
[19] |
史興嶺, 戴智鑫, 徐玲利, 等. 水熱處理溫度對滲氮鈦陶瓷層性能的影響. 材料熱處理學報, 2017, 38(1):165
Shi X L, Dai Z X, Xu L L, et al. Effects of hydrothermal treatment temperature on properties of titanium nitride coating. Trans Mater Heat Treat, 2017, 38(1): 165
|
[20] |
Zhang X, Zhang B, Liu D Y, et al. One-pot synthesis of ternary alloy CuFePt nanoparticles anchored on reduced graphene oxide and their enhanced electrocatalytic activity for both methanol and formic acid oxidation reactions. Electrochim Acta, 2015, 177: 93 doi: 10.1016/j.electacta.2015.02.046
|
[21] |
Kong F Y, Chen T T, Wang J Y, et al. UV-assisted synthesis of tetrapods-like titanium nitride-reduced graphene oxide nanohybrids for electrochemical determination of chloramphenicol. Sens Actuators B, 2016, 225: 298 doi: 10.1016/j.snb.2015.11.041
|
[22] |
Wang C Q, Du J, Wang H W, et al. A facile electrochemical sensor based on reduced graphene oxide and Au nanoplates modified glassy carbon electrode for simultaneous detection of ascorbic acid, dopamine and uric acid. Sens Actuators B, 2014, 204: 302 doi: 10.1016/j.snb.2014.07.077
|
[23] |
Liu X F, Zhang L, Wei S P, et al. Overoxidized polyimidazole/graphene oxide copolymer modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid, guanine and adenine. Biosens Bioelectron, 2014, 57: 232 doi: 10.1016/j.bios.2014.02.017
|
[24] |
Wang S Y, Zhang W, Zhong X, et al. Simultaneous determination of dopamine, ascorbic acid and uric acid using a multi-walled carbon nanotube and reduced graphene oxide hybrid functionalized by PAMAM and Au nanoparticles. Anal Methods, 2015, 7(4): 1471 doi: 10.1039/C4AY02086C
|
[25] |
Zhang X, Zhang Y C, Ma L X. One-pot facile fabrication of graphene-zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Sens Actuators B, 2016, 227: 488 doi: 10.1016/j.snb.2015.12.073
|