<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 7
Jul.  2019
Turn off MathJax
Article Contents
WANG Hai-yu, GUO Li-wei, YANG Quan, WANG Xiao-chen, WANG Shu-zhi, DONG Li-jie. Multi-mode control of strip-finishing-temperature in hot-strip mills[J]. Chinese Journal of Engineering, 2019, 41(7): 940-946. doi: 10.13374/j.issn2095-9389.2019.07.013
Citation: WANG Hai-yu, GUO Li-wei, YANG Quan, WANG Xiao-chen, WANG Shu-zhi, DONG Li-jie. Multi-mode control of strip-finishing-temperature in hot-strip mills[J]. Chinese Journal of Engineering, 2019, 41(7): 940-946. doi: 10.13374/j.issn2095-9389.2019.07.013

Multi-mode control of strip-finishing-temperature in hot-strip mills

doi: 10.13374/j.issn2095-9389.2019.07.013
More Information
  • Corresponding author: WANG Hai-yu, E-mail: wanghaiyu813@163.com
  • Received Date: 2018-05-23
  • Publish Date: 2019-07-01
  • At present, hot-rolled strip manufacturing has gradually exhibited more diversity and process complexity. Using the single control strategy, the traditional strip-finishing temperature-control mode shows some defects and deficiencies, for example, low control precision, slow production rhythm, and great fluctuation in the strip-finishing-temperature curve, which cannot meet the requirements for high precision and high-performance product control. For use with domestic 2250 mm hot-strip mills, a multi-mode control model was developed on a quadratic programming algorithm for the strip-finishing temperature. The proposed multi-mode control model has three control modes to regulate the speed, inter-stand cooling, and coupled speed and inter-stand cooling. To obtain the best control effect, the appropriate control mode can be adopted depending on the different steels used and different working conditions in the hot-rolling process. At the same time, based on the cooling capacity of the adjustable rack and the calculated strip-finishing temperature, Newton-Raphson iteration and the acceleration calculation model were used to calculate the large acceleration region and the quadratic programming optimization method to optimize the on-line adjustment of different control modes to meet all the strip-finishing temperature-control requirements. The on-line application of the proposed multi-model realized a 99% hit rate or better on the strip-finishing temperature for three consecutive months, with a deviation in the strip-finishing-temperature control of ±20℃. A 97.2% hit rate or better was realized on the strip-finishing temperature for three consecutive months with a deviation in the strip-finishing-temperature control of ±15℃. These results show that the control model has the advantages of a fast response speed and high precision and meets the requirements of finishing-temperature control for different steels and different working conditions. As such, the proposed method improves the strip-rolling stability and the accuracy of the finishing-temperature control and enhances product competitiveness.

     

  • loading
  • [1]
    高世卿. 熱連軋帶鋼終軋溫度預報模型的研究[學位論文]. 北京: 北京科技大學, 2010

    Gao S Q. Research on Model for Strip Temperature Prediction of Finishing Rolling in Hot Strip Steel Mill[Dissertation]. Beijing: University of Science and Technology Beijing, 2010
    [2]
    孫一康. 冷熱軋板帶軋機的模型與控制. 北京: 冶金工業出版社, 2010

    Sun Y K. Model and Control of Cold and Hot Rolled Strip Mill. Beijing: Metallurgical Industry Press, 2010
    [3]
    宋勇, 唐荻, 趙志毅, 等. 熱連軋精軋機組溫度模型的改進. 北京科技大學學報, 2002, 24(5): 547 doi: 10.3321/j.issn:1001-053X.2002.05.017

    Song Y, Tang D, Zhao Z Y, et al. Improvement of the temperature model for a finishing mill group in hot rolling. J Univ Sci Technol Beijing, 2002, 24(5): 547 doi: 10.3321/j.issn:1001-053X.2002.05.017
    [4]
    宋勇, 荊豐偉, 殷實, 等. 厚規格熱軋帶鋼高精度卷取溫度控制模型. 工程科學學報, 2015, 37(1): 106 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201501016.htm

    Song Y, Jing F W, Yin S, et al. High-precision coiling temperature control model for heavy gauge strip steel. Chin J Eng, 2015, 37(1): 106 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201501016.htm
    [5]
    傅新, 陳水宣, 鄒俊, 等. 熱軋帶鋼精軋過程的混合溫度模型. 浙江大學學報(工學版), 2008, 42(2): 219 doi: 10.3785/j.issn.1008-973X.2008.02.006

    Fu X, Chen S X, Zou J, et al. Hybrid temperature model for hot strip in finishing stands. J Zhejiang Univ Eng Sci, 2008, 42(2): 219 doi: 10.3785/j.issn.1008-973X.2008.02.006
    [6]
    張博, 郭強, 張飛, 等. 精軋溫度模型優化算法與控制策略的研究. 控制工程, 2014, 21(3): 352 doi: 10.3969/j.issn.1671-7848.2014.03.010

    Zhang B, Guo Q, Zhang F, et al. Temperature optimization and control strategy of hot rolled in finishing. Control Eng China, 2014, 21(3): 352 doi: 10.3969/j.issn.1671-7848.2014.03.010
    [7]
    Serajzadeh S. Prediction of temperature variations and kinetics of austenite phase change on the run-out table. Mater Sci Eng A, 2006, 421(1-2): 260 doi: 10.1016/j.msea.2006.01.071
    [8]
    Fischer F D, Schreiner W E, Werner E A, et al. The temperature and stress fields developing in rolls during hot rolling. J Mater Process Technol, 2004, 150(3): 263 doi: 10.1016/j.jmatprotec.2004.02.059
    [9]
    Stepashin A M, Kondrat'ev A A, Shleining L I. Effect of the finishing temperature in rolling operations on the striation of strip for side members. Metallurgist, 2003, 47(1-2): 88 http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=16980944&site=ehost-live
    [10]
    王淑君, 徐建忠. 加速度對熱帶終軋溫度的影響. 熱加工工藝, 2012, 41(7): 81 doi: 10.3969/j.issn.1001-3814.2012.07.027

    Wang S J, Xu J Z. Effects of acceleration rate on finishing temperature of hot rolling strip. Hot Work Technol, 2012, 41(7): 81 doi: 10.3969/j.issn.1001-3814.2012.07.027
    [11]
    龔殿堯, 徐建忠, 劉相華, 等. 熱連軋帶鋼終軋溫度控制控制樣本跟蹤策略. 東北大學學報(自然科學版), 2006, 27(8): 883 doi: 10.3321/j.issn:1005-3026.2006.08.015

    Gong D Y, Xu J Z, Liu X H, et al. Piecewise micro tracking control of finishing temperature during continuous strip hot rolling. J Northeast Univ Nat Sci, 2006, 27(8): 883 doi: 10.3321/j.issn:1005-3026.2006.08.015
    [12]
    時連興, 王淑志, 徐偉, 等. 熱軋帶鋼終軋溫度控制與優化. 軋鋼, 2013, 30(4): 61 doi: 10.3969/j.issn.1003-9996.2013.04.017

    Shi L X, Wang S Z, Xu W, et al. Control and optimization of strip finishing rolling temperature. Steel Roll, 2013, 30(4): 61 doi: 10.3969/j.issn.1003-9996.2013.04.017
    [13]
    王海玉, 高雷, 趙強, 等. 熱軋帶鋼終軋溫度控制模型的研究與應用. 控制工程, 2018, 25(4): 677 https://www.cnki.com.cn/Article/CJFDTOTAL-JZDF201804022.htm

    Wang H Y, Gao L, Zhao Q, et al. Study and application of strip finishing temperature control model in hot strip mills. Control Eng China, 2018, 25(4): 677 https://www.cnki.com.cn/Article/CJFDTOTAL-JZDF201804022.htm
    [14]
    盧戰杰, 魏紫鑾. 邊界約束二次規劃問題的分解方法. 計算數學, 1999, 21(4): 475 doi: 10.3321/j.issn:0254-7791.1999.04.009

    Lu Z J, Wei Z L. Decomposition method for quadratic programming problem with box constraints. Math Numer Sin, 1999, 21(4): 475 doi: 10.3321/j.issn:0254-7791.1999.04.009
    [15]
    謝政, 李建平, 陳摯. 非線性最優化理論與方法. 北京: 高等教育出版社, 2010

    Xie Z, Li J P, Chen Z. Theory and Methods of Nonlinear Optimization. Beijing: Higher Education Press, 2010
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article views (952) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频