Citation: | CHEN Heng, LU Lin. Effect of residual stress on localized corrosion behavior of metallic materials[J]. Chinese Journal of Engineering, 2019, 41(7): 929-939. doi: 10.13374/j.issn2095-9389.2019.07.012 |
[1] |
龔敏. 金屬腐蝕理論及腐蝕控制. 北京: 化學工業出版社, 2009
Gong M. Metallic Corrosion Theory and Corrosion Control. Beijing: Chemical Industry Press, 2009
|
[2] |
李曉剛. 材料腐蝕與防護概論. 2版. 北京: 機械工業出版社, 2017
Li X G. An Introduction to Corrosion and Protection of Materials. 2nd ed. Beijing: China Machine Press, 2017
|
[3] |
古特曼. 金屬力學化學與腐蝕防護. 北京: 科學出版社, 1989
Gutman. Mechanical Chemistry and Corrosion Protection of Metals. Beijing: Science Press, 1989
|
[4] |
饒思賢, 朱立群, 李荻, 等. 力學化學效應對LY12CZ鋁合金點蝕行為的影響. 中國腐蝕與防護學報, 2007, 27(4): 228 doi: 10.3969/j.issn.1005-4537.2007.04.009
Rao S X, Zhu L Q, Li D, et al. Effects of mechanochemistry to the pitting behaviour of LY12CZ aluminum alloy. J Chin Soc Corros Prot, 2007, 27(4): 228 doi: 10.3969/j.issn.1005-4537.2007.04.009
|
[5] |
Gutman E M, Solovioff G, Eliezer D. The mechanochemical behaviour of type 316L stainless steel. Corros Sci, 1996, 38(7): 1141 doi: 10.1016/0010-938X(96)00008-X
|
[6] |
肖紀美, 曹楚南. 材料腐蝕學原理. 北京: 化學工業出版社, 2002
Xiao J M, Cao C N. Principle of Material Corrosion. Beijing: Chemical Industry Press, 2002
|
[7] |
Meng F J, Wang J Q, Han E, et al. The role of TiN inclusions in stress corrosion crack initiation for Alloy 690TT in high-temperature and high-pressure water. Corros Sci, 2010, 52(3): 928 http://www.sciencedirect.com/science/article/pii/S0010938X09005691
|
[8] |
Xue H B, Cheng Y F. Characterization of inclusions of X80 pipeline steel and its correlation with hydrogen-induced cracking. Corros Sci, 2011, 53(4): 1201 doi: 10.1016/j.corsci.2010.12.011
|
[9] |
Yan Y J, Yan Y, He Y, et al. Hydrogen-induced cracking mechanism of precipitation strengthened austenitic stainless steel weldment. Int J Hydrogen Energy, 2015, 40(5): 2404 doi: 10.1016/j.ijhydene.2014.12.020
|
[10] |
Zhang Z B, Obasi G, Morana R, et al. In-situ observation of hydrogen induced crack initiation in a nickel-based superalloy. Scripta Mater, 2017, 140: 40 doi: 10.1016/j.scriptamat.2017.07.006
|
[11] |
Shen Z, Arioka K, Lozano-Pereza S. A mechanistic study of SCC in Alloy 600 through high-resolution characterization. Corros Sci, 2018, 132: 244 doi: 10.1016/j.corsci.2018.01.004
|
[12] |
Zhou N, Pettersson R, Peng R L, et al. Effect of surface grinding on chloride induced SCC of 304L. Mater Sci Eng A, 2016, 658: 50 doi: 10.1016/j.msea.2016.01.078
|
[13] |
Alvarez M G, Lapitz P, Ruzzante J. Analysis of acoustic emission signals generated from SCC propagation. Corros Sci, 2012, 55: 5 doi: 10.1016/j.corsci.2011.08.014
|
[14] |
Masuda H. SKFM observation of SCC on SUS304 stainless steel. Corros Sci, 2007, 49(1): 120 doi: 10.1016/j.corsci.2006.05.014
|
[15] |
Vignal V, Mary N, Oltra R, et al. A mechanical-electrochemical approach for the determination of precursor sites for pitting corrosion at the microscale. J Electrochem Soc, 2006, 153(9): B352 doi: 10.1149/1.2218762
|
[16] |
Oltra R, Vignal V. Recent advances in local probe techniques in corrosion research——Analysis of the role of stress on pitting sensitivity. Corros Sci, 2007, 49(1): 158 doi: 10.1016/j.corsci.2006.05.032
|
[17] |
龍鳳儀, 楊燕, 王樹立, 等. 微區電化學測量技術及其在腐蝕中的應用. 腐蝕科學與防護技術, 2015, 27(2): 194 https://www.cnki.com.cn/Article/CJFDTOTAL-FSFJ201502015.htm
Long F Y, Yang Y, Wang S L, et al. Microscale electrochemical measurement technology and its application in corrosion. Corros Sci Prot Technol, 2015, 27(2): 194 https://www.cnki.com.cn/Article/CJFDTOTAL-FSFJ201502015.htm
|
[18] |
Vieira L, Lucas F L C, Fisssmer S F, et al. Scratch testing for micro-and nanoscale evaluation of tribocharging in DLC films containing silver nanoparticles using AFM and KPFM techniques. Surf Coat Technol, 2014, 260: 205 doi: 10.1016/j.surfcoat.2014.06.065
|
[19] |
Marques A G, Izquierdo J, Souto R M, et al. SECM imaging of the cut edge corrosion of galvanized steel as a function of pH. Electrochim Acta, 2015, 153: 238 doi: 10.1016/j.electacta.2014.11.192
|
[20] |
Mouanga M, Puiggali M, Devos O. EIS and LEIS investigation of aging low carbon steel with Zn-Ni coating. Electrochim Acta, 2013, 106: 82 doi: 10.1016/j.electacta.2013.05.021
|
[21] |
Sim?es A M, Bastos A C, Ferreira M G, et al. Use of SVET and SECM to study the galvanic corrosion of an iron-zinc cell. Corros Sci, 2007, 49(2): 726 doi: 10.1016/j.corsci.2006.04.021
|
[22] |
Wang F Y, Mao K M, Li B. Prediction of residual stress fields from surface stress measurements. Int J Mech Sci, 2018, 140: 68 doi: 10.1016/j.ijmecsci.2018.02.043
|
[23] |
Rae W, Lomas Z, Jackson M, et al. Measurements of residual stress and microstructural evolution in electron beam welded Ti-6Al-4V using multiple techniques. Mater Charact, 2017, 132: 10 doi: 10.1016/j.matchar.2017.07.042
|
[24] |
Kartal M E, Kiwanuka R, Dunne F P E. Determination of sub-surface stresses at inclusions in single crystal superalloy using HR-EBSD, crystal plasticity and inverse eigenstrain analysis. Int J Solids Struct, 2015, 67-68: 27 doi: 10.1016/j.ijsolstr.2015.02.023
|
[25] |
Salvati E, Korsunsky A M. An analysis of macro-and micro-scale residual stresses of Type Ⅰ, Ⅱ and Ⅲ using FIB-DIC micro-ring-core milling and crystal plasticity FE modelling. Int J Plast, 2017, 98: 123 doi: 10.1016/j.ijplas.2017.07.004
|
[26] |
Withers P J. Residual stress and its role in failure. Rep Prog Phys, 2007, 70(12): 2211 doi: 10.1088/0034-4885/70/12/R04
|
[27] |
宋俊凱, 黃小波, 高玉魁. 殘余應力測試技術分析. 表面技術, 2016, 45(4): 75 https://www.cnki.com.cn/Article/CJFDTOTAL-GJIG199403000.htm
Song J K, Huang X B, Gao Y K. Test and analysis technology of residual stress. Surf Technol, 2016, 45(4): 75 https://www.cnki.com.cn/Article/CJFDTOTAL-GJIG199403000.htm
|
[28] |
James M N. Residual stress influences on structural reliability. Eng Fail Anal, 2011, 18(8): 1909 doi: 10.1016/j.engfailanal.2011.06.005
|
[29] |
Withers P J, Bhadeshia H K D H. Residual stress Part 1-measurement techniques. Mater Sci Technol, 2001, 17(4): 355 doi: 10.1179/026708301101509980
|
[30] |
潘龍. 脈沖電流法調控碳鋼殘余應力的機理及相關實驗研究[學位論文]. 杭州: 浙江大學, 2016
Pan L. Research on the Mechanisms and Related Experiments of Controlling Residual Stress in Carbon Steel based on Pulse Current Method[Dissertation]. Hangzhou: Zhejiang University, 2016
|
[31] |
Groth B P, Langan S M, Haber R A, et al. Relating residual stresses to machining and finishing in silicon carbide. Ceram Int, 2016, 42(1): 799 doi: 10.1016/j.ceramint.2015.08.179
|
[32] |
Niku-Lari A. Residual Stresses. Oxford: Pergamon Press, 1987
|
[33] |
Huang X F, Liu Z W, Xie H M. Recent progress in residual stress measurement techniques. Acta Mech Solida Sin, 2013, 26(6): 570 doi: 10.1016/S0894-9166(14)60002-1
|
[34] |
王楠, 羅嵐, 劉勇, 等. 金屬構件殘余應力測量技術進展. 儀器儀表學報, 2017, 38(10): 2508 doi: 10.3969/j.issn.0254-3087.2017.10.020
Wang N, Luo L, Liu Y, et al. Research progress on stress measurement technology for metal components. Chin J Sci Instrum, 2017, 38(10): 2508 doi: 10.3969/j.issn.0254-3087.2017.10.020
|
[35] |
Bemporad E, Brisotto M, Depero L E, et al. A critical comparison between XRD and FIB residual stress measurement techniques in thin films. Thin Solid Films, 2014, 572: 224 doi: 10.1016/j.tsf.2014.09.053
|
[36] |
王慶明, 孫淵. 殘余應力測試技術的進展與動向. 機電工程, 2011, 28(1): 11 doi: 10.3969/j.issn.1001-4551.2011.01.003
Wang Q M, Sun Y. Research development on the test methods of residual stress. J Mech Electr Eng Mag, 2011, 28(1): 11 doi: 10.3969/j.issn.1001-4551.2011.01.003
|
[37] |
孫光愛, 陳波. 中子衍射殘余應力分析技術及其應用. 核技術, 2007, 30(4): 286 doi: 10.3321/j.issn:0253-3219.2007.04.012
Sun G A, Chen B. The technology and application of residual stress analysis by neutron diffraction. Nucl Tech, 2007, 30(4): 286 doi: 10.3321/j.issn:0253-3219.2007.04.012
|
[38] |
Wilkinson A J, Meaden G, Dingley D J. High-resolution elastic strain measurement from electron backscatter diffraction patterns: new levels of sensitivity. Ultramicroscopy, 2006, 106(4-5): 307 doi: 10.1016/j.ultramic.2005.10.001
|
[39] |
黃亞敏, 潘春旭. 基于電子背散射衍射(EBSD)技術的材料微區應力應變狀態研究綜述. 電子顯微學報, 2010, 29(1): 1 doi: 10.3969/j.issn.1000-6281.2010.01.001
Huang Y M, Pan C X. Micro-stress-strain analysis in materials based upon EBSD technique: a review. J Chin Electron Microsc Soc, 2010, 29(1): 1 doi: 10.3969/j.issn.1000-6281.2010.01.001
|
[40] |
Sato H, Shishido N, Kamiya S, et al. Local distribution of residual stress of Cu in LSI interconnect. Mater Lett, 2014, 136: 362 doi: 10.1016/j.matlet.2014.08.088
|
[41] |
文舒, 董安平, 陸燕玲, 等. GH536高溫合金選區激光熔化溫度場和殘余應力的有限元模擬. 金屬學報, 2018, 54(3): 393 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201803005.htm
Wen S, Dong A P, Lu Y L, et al. Finite element simulation of the temperature field and residual stress in GH536 superalloy treated by selective laser melting. Acta Metall Sin, 2018, 54(3): 393 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201803005.htm
|
[42] |
Bertali G, Scenini F, Burke M G. The effect of residual stress on the preferential intergranular oxidation of Alloy 600. Corros Sci, 2016, 111: 494 doi: 10.1016/j.corsci.2016.05.022
|
[43] |
Wu Q, Xie D J, Si Y, et al. Simulation analysis and experimental study of milling surface residual stress of Ti-10V-2Fe-3Al. J Manuf Processes, 2018, 32: 530 doi: 10.1016/j.jmapro.2018.03.015
|
[44] |
Kayser W, Bezold A, Broeckmann C. EBSD-based FEM simulation of residual stresses in a WC6wt. -%Co hardmetal. Int J Refract Met Hard Mater, 2018, 73: 139 doi: 10.1016/j.ijrmhm.2017.12.035
|
[45] |
Soltis J. Passivity breakdown, pit initiation and propagation of pits in metallic materials-review. Corros Sci, 2015, 90: 5 doi: 10.1016/j.corsci.2014.10.006
|
[46] |
Wang Y J, Han X P, Liu Y, et al. Effect of residual stress on corrosion sensitivity of carbon steel studied by SECM. Chem Res Chin Univ, 2014, 30(6): 1022 doi: 10.1007/s40242-014-4099-6
|
[47] |
Li M C, Cheng Y F. Corrosion of the stressed pipe steel in carbonate-bicarbonate solution studied by scanning localized electrochemical impedance spectroscopy. Electrochim Acta, 2008, 53(6): 2831 doi: 10.1016/j.electacta.2007.10.077
|
[48] |
Xiong Q R, Liu D X, Zhang G J, et al. Influence of residual tensile stress on stress corrosion behavior of the base metal of X80 pipe//Proceedings of the ASME 2014 Pressure Vessels & Piping Conference. Anaheim, 2014: V001T01A073
|
[49] |
熊慶人, 李為衛, 付安慶, 等. 殘余應力對X80 UOE鋼管耐電化學腐蝕性能的影響. 稀有金屬材料工程, 2012, 41(增刊2): 749 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE2012S2180.htm
Xiong Q R, Li W W, Fu A Q, et al. Effect of residual stress on electrochemistry corrosion resistance of X80 UOE pipe. Rare Met Mater Eng, 2012, 41(Suppl 2): 749 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE2012S2180.htm
|
[50] |
Trethewey K R, Wenman M, Chard-Tuckey P, et al. Correlation of meso-and micro-scale hardness measurements with the pitting of plastically-deformed Type 304L stainless steel. Corros Sci, 2008, 50(4): 1132 doi: 10.1016/j.corsci.2007.11.026
|
[51] |
Martin F A, Bataillon C, Cousty J. In situ AFM detection of pit onset location on a 304L stainless steel. Corros Sci, 2008, 50(1): 84 doi: 10.1016/j.corsci.2007.06.023
|
[52] |
來維亞, 徐欣, 白真權, 等. 殘余拉應力對304不銹鋼電化學腐蝕行為的影響. 機械工程材料, 2016, 40(2): 84 https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201602024.htm
Lai W Y, Xu X, Bai Z Q, et al. Effect of residual tensile stresses on electrochemical corrosion behavior of 304 stainless steel. Mater Mech Eng, 2016, 40(2): 84 https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201602024.htm
|
[53] |
Vignal V, Mary N, Oltra R, et al. A mechanical-electrochemical approach for the determination of precursor sites for pitting corrosion at the microscale. J Electrochem Soc, 2006, 153(9): B352 doi: 10.1149/1.2218762
|
[54] |
Nguyen T T, Bolivar J, Shi Y, et al. A phase field method for modeling anodic dissolution induced stress corrosion crack propagation. Corros Sci, 2018, 132: 146 doi: 10.1016/j.corsci.2017.12.027
|
[55] |
Nam J Y, Seo D H, Lee S Y, et al. The effect of residual stress on the SCC using ANSYS. Procedia Eng, 2011, 10: 2609 doi: 10.1016/j.proeng.2011.04.435
|
[56] |
白林越, 江克斌, 高磊, 等. 殘余應力對焊接結構應力腐蝕行為影響機理研究. 熱加工工藝, 2017, 46(21): 168 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201721049.htm
Bai L Y, Jiang K B, Gao L, et al. Influence mechanism of residual stress on stress corrosion behavior of welded structure. Hot Work Technol, 2017, 46(21): 168 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201721049.htm
|
[57] |
Toribio J. Role of crack-tip residual stresses in stress corrosion behavior of prestressing steel. Constr Build Mater, 1998, 12(5): 283 doi: 10.1016/S0950-0618(98)00010-5
|
[58] |
Lu J Z, Luo K Y, Yang D K, et al. Effects of laser peening on stress corrosion cracking (SCC) of ANSI 304 austenitic stainless steel. Corros Sci, 2012, 60: 145 doi: 10.1016/j.corsci.2012.03.044
|
[59] |
Wei X L, Zhang C, Ling X. Effects of laser shock processing on corrosion resistance of AISI 304 stainless steel in acid chloride solution. J Alloys Compd, 2017, 723: 237 doi: 10.1016/j.jallcom.2017.06.283
|
[60] |
Ghosh S, Rana V P S, Kain V, et al. Role of residual stresses induced by industrial fabrication on stress corrosion cracking susceptibility of austenitic stainless steel. Mater Des, 2011, 32(7): 3823 doi: 10.1016/j.matdes.2011.03.012
|
[61] |
Zhang W Q, Fang K W, Hu Y J, et al. Effect of machining-induced surface residual stress on initiation of stress corrosion cracking in 316 austenitic stainless steel. Corros Sci, 2016, 108: 173 doi: 10.1016/j.corsci.2016.03.008
|
[62] |
Van Boven G, Chen W, Rogge R. The role of residual stress in neutral pH stress corrosion cracking of pipeline steels. Part Ⅰ: pitting and cracking occurrence. Acta Mater, 2007, 55(1): 29 doi: 10.1016/j.actamat.2006.08.037
|
[63] |
Gravier J, Vignal V, Bissey-Breton S. Influence of residual stress, surface roughness and crystallographic texture induced by machining on the corrosion behaviour of copper in salt-fog atmosphere. Corros Sci, 2012, 61: 162 doi: 10.1016/j.corsci.2012.04.032
|
[64] |
Pandey V, Singh J K, Chattopadhyay K, et al. Influence of ultrasonic shot peening on corrosion behavior of 7075 aluminum alloy. J Alloys Compd, 2017, 723: 826 doi: 10.1016/j.jallcom.2017.06.310
|
[65] |
Chen T, John H, Xu J, et al. Influence of surface modifications on pitting corrosion behavior of nickel-base alloy 718. Part 1: effect of machine hammer peening. Corros Sci, 2013, 77: 230 doi: 10.1016/j.corsci.2013.08.007
|
[66] |
Zheng Y, Li Y, Chen J H, et al. Effects of tensile and compressive deformation on corrosion behavior of a Mg-Zn alloy. Corros Sci, 2015, 90: 445 doi: 10.1016/j.corsci.2014.10.043
|
[67] |
Bertali G, Scenini F, Burke M G. The effect of residual stress on the preferential intergranular oxidation of Alloy 600. Corros Sci, 2016, 111: 494 doi: 10.1016/j.corsci.2016.05.022
|