<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 7
Jul.  2019
Turn off MathJax
Article Contents
HE Zu-dong, GENG Chao, QIU Jia-jia, YANG Xi, XI Feng-shuo, LI Shao-yuan, MA Wen-hui. Porous silicon nanowire arrays fabrication through one-step metal-assisted chemical etching[J]. Chinese Journal of Engineering, 2019, 41(7): 922-928. doi: 10.13374/j.issn2095-9389.2019.07.011
Citation: HE Zu-dong, GENG Chao, QIU Jia-jia, YANG Xi, XI Feng-shuo, LI Shao-yuan, MA Wen-hui. Porous silicon nanowire arrays fabrication through one-step metal-assisted chemical etching[J]. Chinese Journal of Engineering, 2019, 41(7): 922-928. doi: 10.13374/j.issn2095-9389.2019.07.011

Porous silicon nanowire arrays fabrication through one-step metal-assisted chemical etching

doi: 10.13374/j.issn2095-9389.2019.07.011
More Information
  • Corresponding author: LI Shao-yuan, E-mail: lsy415808550@163.com
  • Received Date: 2018-06-24
  • Publish Date: 2019-07-01
  • One-step metal-assisted chemical etching (MACE) was used to fabricate porous silicon nanowire arrays. Also, the effects of doping level, AgNO3 concentration, and HF concentration on the morphology and structure of porous silicon nanowire were investigated. The results show that the higher doping level is beneficial for etching the silicon wafer and forming silicon nanowire arrays. This is because the higher doping level introduces more impurities and defects on the surface of the silicon wafer, and at the same time, the Schottky barrier between the silicon wafer with the higher doping level and the solution is lower. Thus, the silicon wafer is easier to oxidate to form nanowire arrays. The AgNO3 concentration plays a critical role in the fabrication of the porous silicon nanowire arrays during the one-step MACE process. If AgNO3 concentration is too low or too high, corrosion pits and collapsed clusters of nanowires could form on the surface of the silicon wafer. When AgNO3 concentration was 0.02 mol·L-1, silicon nanowires grew and became longer, eventually forming a porous array of silicon nanowire. In the meantime, as silicon nanowires grew, capillary stress between nanowires caused agglomeration at the top of some nanowires. Furthermore, when HF solution concentration exceeded 4.6 mol·L-1, the length of silicon nanowire increased with increasing HF concentration. Furthermore, a porous structure was formed on top the silicon nanowire, and the porosity of the silicon nanowires increased with increasing HF concentration. This was due to a large number of Ag+ random nucleations at the top of the nanowires, and lateral etching of the silicon nanowires occurred. In the end, the formation process of the porous silicon nanowires is explained by a model based on the experimental phenomena. It is attributed to the deposition of silver ions and the oxidation of dissolved silicon substrates.

     

  • loading
  • [1]
    Priolo F, Gregorkiewicz T, Galli M, et al. Silicon nanostructures for photonics and photovoltaics. Nat Nanotechnol, 2014, 9(1): 19 doi: 10.1038/nnano.2013.271
    [2]
    Wu D, Lou Z H, Wang Y G, et al. Photovoltaic high-performance broadband photodetector based on MoS2/Si nanowire array heterojunction. Sol Energy Mater Sol Cells, 2018, 182: 272 doi: 10.1016/j.solmat.2018.03.017
    [3]
    劉莉, 曹陽, 賀軍輝, 等. 硅納米線陣列的制備及其光電應用. 化學進展, 2013, 25(2-3): 248 https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ2013Z1009.htm

    Liu L, Cao Y, He J H, et al. Preparation and optoelectronic application of silicon nanowire arrays. Prog Chem, 2013, 25(2-3): 248 https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ2013Z1009.htm
    [4]
    尚鈺東, 陳秀華, 李紹元, 等. 石墨烯/n-Si肖特基結太陽能電池的性能限制因素及效率提升方法. 材料導報, 2017, 31(2): 123 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201703020.htm

    Shang Y D, Chen X H, Li S Y, et al. Performance limiting factors and efficiency improvement methods of graphene/n-Si Schottky junction solar cell. Mater Rev, 2017, 31(2): 123 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201703020.htm
    [5]
    丁朝, 馬文會, 魏奎先, 等. 造渣氧化精煉提純冶金級硅研究進展. 真空科學與技術學報, 2013, 33(2): 185 doi: 10.3969/j.issn.1672-7126.2013.02.18

    Ding Z, Ma W H, Wei K X, et al. Latest progress in purification of metallurgical grade silicon by slag oxidation refining. Chin J Vac Sci Technol, 2013, 33(2): 185 doi: 10.3969/j.issn.1672-7126.2013.02.18
    [6]
    廖明佳, 喬雷, 肖鵬, 等. 濕化學法制備硅納米線陣列及其光電化學產氫性能分析. 無機化學學報, 2015, 31(3): 439 https://www.cnki.com.cn/Article/CJFDTOTAL-WJHX201503002.htm

    Liao M J, Qiao L, Xiao P, et al. Preparation of silicon nanowires array by chemistry methods and photoelectrochemical hydrogen generation performance analysis. Chin J Inorg Chem, 2015, 31(3): 439 https://www.cnki.com.cn/Article/CJFDTOTAL-WJHX201503002.htm
    [7]
    倪自豐, 劉利國, 王永光. 錫催化生長氧化硅納米線的制備和表征. 材料研究學報, 2011, 25(2): 183 https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201102015.htm

    Ni Z F, Liu L G, Wang Y G. Synthesis and characterization of silica nanowires catalysted by tin. Chin J Mater Res, 2011, 25(2): 183 https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201102015.htm
    [8]
    Ahmed N, Bhargav P B, Rayerfrancis A, et al. Study the effect of plasma power density and gold catalyst thickness on silicon nanowires growth by plasma enhanced chemical vapour deposition. Mater Lett, 2018, 219: 127 doi: 10.1016/j.matlet.2018.02.086
    [9]
    Liu L, Li Z S, Hu H D, et al. Insight into macroscopic metal-assisted chemical etching for silicon nanowires. Acta Phys-Chim Sin, 2016, 32(4): 1019 doi: 10.3866/PKU.WHXB201602183
    [10]
    He X, Li S Y, Ma W H, et al. A simple and low-cost chemical etching method for controllable fabrication of large-scale kinked silicon nanowires. Mater Lett, 2017, 196: 269 doi: 10.1016/j.matlet.2017.03.131
    [11]
    Li X, Bohn P W. Metal-assisted chemical etching in F/H2O2 produces porous silicon. Appl Phys Lett, 2000, 77(16): 2572 doi: 10.1063/1.1319191
    [12]
    He X, Zou Y X, Sheng G Z, et al. Research on controllable preparation and antireflection properties of zigzag SiNWs arrays. Integr Ferroelectr, 2017, 182(1): 65 doi: 10.1080/10584587.2017.1352388
    [13]
    Zhang C, Li S Y, Ma W H, et al. Fabrication of ultra-low antireflection SiNWs arrays from mc-Si using one step MACE. J Mater Sci Mater Electron, 2017, 28(12): 8510 doi: 10.1007/s10854-017-6573-7
    [14]
    Li S Y, Ma W H, Chen X H, et al. Structure and antireflection properties of SiNWs arrays form mc-Si wafer through Ag-catalyzed chemical etching. Appl Surf Sci, 2016, 369: 232 doi: 10.1016/j.apsusc.2016.02.028
    [15]
    Yeom J, Ratchford D, Field C R, et al. Decoupling diameter and pitch in silicon nanowire arrays made by metal-assisted chemical etching. Adv Funct Mater, 2014, 24(1): 106 doi: 10.1002/adfm.201301094
    [16]
    Ding Z, Wei K X, Ma W H, et al. Boron removal from metallurgical-grade silicon using CaO-SiO2 slag. J Iron Steel Res Int, 2012, 358(Suppl 2): 2708 https://www.researchgate.net/publication/277405329_Boron_Removal_From_Metallurgical-Grade_Silicon_Using_CaO-SiO2_Slag
    [17]
    Cullis A G, Canham L T, Calcott P D J. The structural and luminescence properties of porous silicon. J Appl Phys, 1997, 82(3): 909 doi: 10.1063/1.366536
    [18]
    Li S Y, Ma W H, Zhou Y, et al. Fabrication of porous silicon nanowires by MACE method in HF/H2O2/AgNO3 system at room temperature. Nanoscale Res Lett, 2014, 9: 196 doi: 10.1186/1556-276X-9-196
    [19]
    Smith Z R, Smith R L, Collins S D. Mechanism of nanowire formation in metal assisted chemical etching. Electrochim Acta, 2013, 92: 139 doi: 10.1016/j.electacta.2012.12.075
    [20]
    Angelescu D G, Vasilescu M, Anastasescu M, et al. Synthesis and association of Ag(0) nanoparticles in aqueous Pluronic F127 triblock copolymer solutions. Colloids Surf A, 2012, 394: 57 doi: 10.1016/j.colsurfa.2011.11.025
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(5)

    Article views (1121) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频