Citation: | LI Xiao-tong, TANG Xiao-zhi, GUO Ya-fang. Minimum energy path of a solute atom diffusing to an edge dislocation core in Al-Mg alloys based on empirical atomic potential[J]. Chinese Journal of Engineering, 2019, 41(7): 898-905. doi: 10.13374/j.issn2095-9389.2019.07.008 |
[1] |
Portevin A, Le Chatelier F. Sur un phénomène observé lors de l'essai de traction d'alliages en cours de transformation. Comptes Rendus de l'Académie des Sciences Paris, 1923, 176: 507
|
[2] |
Araki H, Saji S, Okabe T, et al. Solidation of mechanically alloyed Al-10.7%Ti powder at low temperature and high pressure of 2 GPa. Mater Trans JIM, 1995, 36(3): 465 doi: 10.2320/matertrans1989.36.465
|
[3] |
彭開萍, 陳文哲, 錢匡武. 3004鋁合金"反常"鋸齒屈服現象的研究. 物理學報, 2006, 55(7): 3569 doi: 10.3321/j.issn:1000-3290.2006.07.061
Peng K P, Chen W Z, Qian K W. Study of an anomalous serrated yielding phenomenon in 3004 aluminum alloy. Acta Phys Sin, 2006, 55(7): 3569 doi: 10.3321/j.issn:1000-3290.2006.07.061
|
[4] |
Van den Beukel A. Theory of the effect of dynamic strain aging on mechanical properties. Phys Status Solidi A, 1975, 30(1): 197 doi: 10.1002/pssa.2210300120
|
[5] |
Sun L, Zhang Q C, Cao P T. Influence of solute cloud and precipitates on spatiotemporal characteristics of Portevin-Le Chatelier effect in A2024 aluminum alloys. Chin Phys B, 2009, 18(8): 3500 doi: 10.1088/1674-1056/18/8/061
|
[6] |
曹鵬濤, 張青川, 肖銳, 等. 紅外測溫法研究Al-Mg合金中的Portevin-Le Chatelier效應. 物理學報, 2009, 58(8): 5591 doi: 10.3321/j.issn:1000-3290.2009.08.071
Cao P T, Zhang Q C, Xiao R, et al. The Portevin-Le Chatelier effect in Al-Mg alloy investigated by infrared pyrometry. Acta Phys Sin, 2009, 58(8): 5591 doi: 10.3321/j.issn:1000-3290.2009.08.071
|
[7] |
高越, 符師樺, 蔡玉龍, 等. 數字剪切散斑干涉法研究鋁合金中Portevin-Le Chatelier帶的離面變形行為. 物理學報, 2014, 63(6): 066201-1 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201406028.htm
Gao Y, Fu S H, Cai Y L, et al. Digital shearography investigation on the out-plane deformation of the Portevin-Le Chatelier bands. Acta Phys Sin, 2014, 63(6): 066201-1 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201406028.htm
|
[8] |
王中光, 黃元士, 葛庭燧. 在鋁鎂合金的疲勞載荷過程中溶質原子與位錯的交互作用. 物理學報, 1965, 21(6): 1253 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB196506014.htm
Wang Z G, Huang Y S, Ge T S. Interaction of solute atoms with dislocations in aluminum-magnesium alloys under fatigue loading. Acta Phys Sin, 1965, 21(6): 1253 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB196506014.htm
|
[9] |
Aboulfadl H, Deges J, Choi P, et al. Dynamic strain aging studied at the atomic scale. Acta Mater, 2015, 86: 34 doi: 10.1016/j.actamat.2014.12.028
|
[10] |
林均品. Mg含量對Al-Mg合金動態再結晶的影響. 北京科技大學學報, 1997, 19(1): 47 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD199701008.htm
Lin J P. Effect of Mg content on dynamic recrystallization behaviours of Al-Mg alloys. J Univ Sci Technol Beijing, 1997, 19(1): 47 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD199701008.htm
|
[11] |
Keralavarma S M, Bower A F, Curtin W A. Quantum-to-continuum prediction of ductility loss in aluminium-magnesium alloys due to dynamic strain aging. Nature Commun, 2014, 5: 4604 doi: 10.1038/ncomms5604
|
[12] |
杜海龍, 陳忠家. 鋁鎂合金中溶質分布形態的分子動力學研究. 合肥工業大學學報(自然科學版), 2011, 34(3): 346 doi: 10.3969/j.issn.1003-5060.2011.03.006
Du H L, Chen Z J. Molecular dynamics investigation on the distribution morphology of solute atoms in Al-Mg alloy. J Hefei Univ Technol Nat Sci, 2011, 34(3): 346 doi: 10.3969/j.issn.1003-5060.2011.03.006
|
[13] |
Curtin W A, Olmsted D L, Hector Jr L G. A predictive mechanism for dynamic strain ageing in aluminium-magnesium alloys. Nature Mater, 2006, 5(11): 875 doi: 10.1038/nmat1765
|
[14] |
Lebyodkin M, Dunin-Barkowskii L, Brechet Y, et al. Spatio-temporal dynamics of the Portevin-Le Chatelier effect: experiment and modelling. Acta Mater, 2000, 48(10): 2529 doi: 10.1016/S1359-6454(00)00067-7
|
[15] |
何艷生, 符師樺, 張青川. 不同加載條件下位錯和溶質原子交互作用的數值模擬. 物理學報, 2014, 63(22): 228102-1 doi: 10.7498/aps.63.228102
He Y S, Fu S H, Zhang Q C. Simulations of the interactions between dislocations and solute atoms in different loading conditions. Acta Phys Sin, 2014, 63(22): 228102-1 doi: 10.7498/aps.63.228102
|
[16] |
Fan Y, Osetskiy Y N, Yip S, et al. Mapping strain rate dependence of dislocation-defect interactions by atomistic simulations. Proc Natl Acad Sci USA, 2013, 110(44): 17756 doi: 10.1073/pnas.1310036110
|
[17] |
Tang X Z, Guo Y F, Sun L X, et al. Strain rate effect on dislocation climb mechanism via self-interstitials. Mater Sci Eng A, 2018, 713: 141 doi: 10.1016/j.msea.2017.12.002
|
[18] |
Yan X, Sharma P. Time-scaling in atomistics and the rate-dependent mechanical behavior of nanostructures. Nano Lett, 2016, 16(6): 3487 doi: 10.1021/acs.nanolett.6b00117
|
[19] |
江慧豐, 張青川, 陳學東, 等. 位錯與溶質原子間動態相互作用的數值模擬研究. 物理學報, 2007, 56(6): 3388 doi: 10.3321/j.issn:1000-3290.2007.06.057
Jiang H F, Zhang Q C, Chen X D, et al. Numerical simulation of the dynamic interactions between dislocation and solute atoms. Acta Phys Sin, 2007, 56(6): 3388 doi: 10.3321/j.issn:1000-3290.2007.06.057
|
[20] |
Liu X Y, Ohotnicky P P, Adams J B, et al. Anisotropic surface segregation in Al-Mg alloys. Surf Sci, 1997, 373(2-3): 357 doi: 10.1016/S0039-6028(96)01154-5
|