Citation: | HUANG Yi-jun, ZHANG Mai-cang, XIE Xi-shan. A simulation of the effect of Nb-rich carbonitride on the structure and properties of weld HAZ of 22Cr15Ni3.5CuNbN austenitic steel[J]. Chinese Journal of Engineering, 2019, 41(7): 889-897. doi: 10.13374/j.issn2095-9389.2019.07.007 |
[1] |
謝錫善, 艾卓群, 遲成宇, 等. 620~650 ℃鍋爐過熱器/再熱器用新型奧氏體耐熱鋼SP2215的研發. 鋼管, 2018, 47(1): 23 doi: 10.3969/j.issn.1001-2311.2018.01.005
Xie X S, Ai Z Q, Chi C Y, et al. R & D of the new type SP2215 austenitic heat-resistant steel for servicing 620~650 ℃ boiler super heater/reheater. Steel Pipe, 2018, 47(1): 23 doi: 10.3969/j.issn.1001-2311.2018.01.005
|
[2] |
Brauer G, Jander J. Die nitride des niobs. Z Anorg Allg Chem, 1952, 270(1-4): 160 doi: 10.1002/zaac.19522700114
|
[3] |
雍岐龍, 裴和中, 田建國, 等. 鈮在鋼中的物理冶金學基礎數據. 鋼鐵研究學報, 1998, 10(2): 66 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON802.015.htm
Yong Q L, Pei H Z, Tian J G, et al. Physico-metallurgical data of niobium in steel. J Iron Steel Res, 1998, 10(2): 66 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON802.015.htm
|
[4] |
李鴻美, 曹建春, 孫力軍, 等. 含鈮微合金鋼碳氮化物析出行為研究的現狀及發展. 材料導報, 2010, 24(9): 84 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201017021.htm
Li H M, Cao J C, Sun L J, et al. Current situation and development of Nb microalloyed steel carbonitride precipitation behavior. Mater Rev, 2010, 24(9): 84 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201017021.htm
|
[5] |
Irvine K J, Pickering F B, Gladman T. Grain-refined C-Mn steels. Iron Steel Inst J, 1967, 205(2): 161
|
[6] |
譚靜. 鈮的碳氮化物對奧氏體靜態再結晶的影響[學位論文]. 武漢: 武漢科技大學, 2006
Tan J. The Effect of Niobium Carbonitride on Austenite Static Recrystallization [Dissertation]. Wuhan: Wuhan University of Science and Technology, 2006
|
[7] |
Brooks J A, Thompson A W. Microstructural development and solidification cracking susceptibility of austenitic stainless steel welds. Int Mater Rev, 1991, 36(1): 16 doi: 10.1179/imr.1991.36.1.16
|
[8] |
Robinson J L, Scott M H. Liquation cracking during the welding of austenitic stainless steels and nickel alloys. Philos Trans R Soc London Ser A, 1980, 295(1413): 105 doi: 10.1098/rsta.1980.0079
|
[9] |
Bhaduri A K, Srinivasan G, Klenk A, et al. Study of hot cracking behaviour of 14Cr-15Ni-2.5Mo Ti-modified fully austenitic stainless steels using varestraint and hot ductility tests. Weld World, 2009, 53(1-2): 17 doi: 10.1007/BF03266688
|
[10] |
Li L J, Messler R W. Dissolution kinetics of NbC particles in the heat-affected zone of type 347 austenitic stainless steel. Metall Mater Trans A, 2002, 33(7): 2031 doi: 10.1007/s11661-002-0035-3
|
[11] |
謝錫善, 于鴻垚, 遲成宇, 等. 用多種納米析出相復合強化鉻鎳型奧氏體耐熱鋼的方法: 中國專利, 201310718590.7, 2014-03-19
Xie X S, Yu H Y, Chi C Y, et al. Method for Reinforcing Chromium-Nickel Type Austenitic Heat-Resistant Steel by Using Multiple Nano-Precipitation Phases: China Patent, 201310718590.7, 2014-03-19
|
[12] |
Liu W, Lu F G, Yang R J, et al. Gleeble simulation of the HAZ in Inconel 617 welding. J Mater Process Technol, 2015, 225: 221 doi: 10.1016/j.jmatprotec.2015.06.001
|
[13] |
彭志方, 任文, 楊超, 等. HR3C鋼運行過熱器管的脆化與晶界M23C6相參量演化的關系. 金屬學報, 2015, 51(11): 1325 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201511004.htm
Peng Z F, Ren W, Yang C, et al. Relationship between the evolution of phase parameters of grain boundary M23C6 and embrittlement of HR3C super-heater tubes in service. Acta Metall Sin, 2015, 51(11): 1325 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201511004.htm
|
[14] |
張正延, 李昭東, 雍岐龍, 等. 升溫過程中Nb和Nb-Mo微合金化鋼中碳化物的析出行為研究. 金屬學報, 2015, 51(3): 315 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201503007.htm
Zhang Z Y, Li Z D, Yong Q L, et al. Precipitation behavior of carbide during heating process in Nb and Nb-Mo micro-alloyed steels. Acta Metall Sin, 2015, 51(3): 315 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201503007.htm
|
[15] |
黃澤文. 微合金化鋼的碳氮化物在奧氏體中的行為. 四川冶金, 1988(2): 51 https://www.cnki.com.cn/Article/CJFDTOTAL-SCYJ198802011.htm
Huang Z W. Behavior of carbonitrides in micro-alloyed steels in austenite. Sichuan Metall, 1988(2): 51 https://www.cnki.com.cn/Article/CJFDTOTAL-SCYJ198802011.htm
|