<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 7
Jul.  2019
Turn off MathJax
Article Contents
HUANG Yi-jun, ZHANG Mai-cang, XIE Xi-shan. A simulation of the effect of Nb-rich carbonitride on the structure and properties of weld HAZ of 22Cr15Ni3.5CuNbN austenitic steel[J]. Chinese Journal of Engineering, 2019, 41(7): 889-897. doi: 10.13374/j.issn2095-9389.2019.07.007
Citation: HUANG Yi-jun, ZHANG Mai-cang, XIE Xi-shan. A simulation of the effect of Nb-rich carbonitride on the structure and properties of weld HAZ of 22Cr15Ni3.5CuNbN austenitic steel[J]. Chinese Journal of Engineering, 2019, 41(7): 889-897. doi: 10.13374/j.issn2095-9389.2019.07.007

A simulation of the effect of Nb-rich carbonitride on the structure and properties of weld HAZ of 22Cr15Ni3.5CuNbN austenitic steel

doi: 10.13374/j.issn2095-9389.2019.07.007
More Information
  • Corresponding author: ZHANG Mai-cang, E-mail: mczhang@ustb.edu.cn
  • Received Date: 2018-11-09
  • Publish Date: 2019-07-01
  • Niobium is a strong carbonitride-forming element. The evolution of Nb-rich carbonitride in austenitic steels during welding has an important effect on the ductility of the heat-affected zone (HAZ). The new austenitic heat-resistant steel of 22Cr15Ni3.5CuNbN, a candidate material for ultra-super critical boiler superheater and reheater serviced at 620-650 ℃, contains 0.5% Nb, which will significantly affect the steel's weldability; therefore, it is necessary to study the microstructure and properties of the weld HAZ of the steel and provide a reference for the further applications of this new material. Because of the narrow weld HAZ of this material, the extended HAZ structure of 22Cr15Ni3.5CuNbN austenitic steel at different peak temperatures from 1150 ℃ to 1300 ℃ was obtained by Gleeble thermal physical simulation method in this study, aiming to simulate the thermal cycling process of the welding process, and impact performance tests were carried out. The results show that a certain amount of Nb-rich composite carbonitrides is present in the base metal of the experimental steel, which effectively pins the grain boundaries and entangl with a large number of dislocations. The Nb-rich composite carbonitride underwent a complex process of dissolution and re-precipitation during the simulated welding process. When the peak temperature was at 1150 ℃, only small particles of Nb-rich carbonitrides were dissolved, while when the peak temperature reached 1300 ℃, the Nb-rich composite carbonitride underwent dissolution and re-precipitation, showing a "mesh" structure, and its overall size increased. The evolution of Nb-rich composite carbonitrides led to changes in the impact energy of this steel. The impact toughness of the experimental steel subjected to welding thermal cycling condition was higher than that of the base metal. With the increase in the peak temperature, the impact toughness first increased and then decreased. The impact toughness of the steel reached the highest when the peak temperature was at 1150 ℃.

     

  • loading
  • [1]
    謝錫善, 艾卓群, 遲成宇, 等. 620~650 ℃鍋爐過熱器/再熱器用新型奧氏體耐熱鋼SP2215的研發. 鋼管, 2018, 47(1): 23 doi: 10.3969/j.issn.1001-2311.2018.01.005

    Xie X S, Ai Z Q, Chi C Y, et al. R & D of the new type SP2215 austenitic heat-resistant steel for servicing 620~650 ℃ boiler super heater/reheater. Steel Pipe, 2018, 47(1): 23 doi: 10.3969/j.issn.1001-2311.2018.01.005
    [2]
    Brauer G, Jander J. Die nitride des niobs. Z Anorg Allg Chem, 1952, 270(1-4): 160 doi: 10.1002/zaac.19522700114
    [3]
    雍岐龍, 裴和中, 田建國, 等. 鈮在鋼中的物理冶金學基礎數據. 鋼鐵研究學報, 1998, 10(2): 66 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON802.015.htm

    Yong Q L, Pei H Z, Tian J G, et al. Physico-metallurgical data of niobium in steel. J Iron Steel Res, 1998, 10(2): 66 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON802.015.htm
    [4]
    李鴻美, 曹建春, 孫力軍, 等. 含鈮微合金鋼碳氮化物析出行為研究的現狀及發展. 材料導報, 2010, 24(9): 84 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201017021.htm

    Li H M, Cao J C, Sun L J, et al. Current situation and development of Nb microalloyed steel carbonitride precipitation behavior. Mater Rev, 2010, 24(9): 84 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201017021.htm
    [5]
    Irvine K J, Pickering F B, Gladman T. Grain-refined C-Mn steels. Iron Steel Inst J, 1967, 205(2): 161
    [6]
    譚靜. 鈮的碳氮化物對奧氏體靜態再結晶的影響[學位論文]. 武漢: 武漢科技大學, 2006

    Tan J. The Effect of Niobium Carbonitride on Austenite Static Recrystallization [Dissertation]. Wuhan: Wuhan University of Science and Technology, 2006
    [7]
    Brooks J A, Thompson A W. Microstructural development and solidification cracking susceptibility of austenitic stainless steel welds. Int Mater Rev, 1991, 36(1): 16 doi: 10.1179/imr.1991.36.1.16
    [8]
    Robinson J L, Scott M H. Liquation cracking during the welding of austenitic stainless steels and nickel alloys. Philos Trans R Soc London Ser A, 1980, 295(1413): 105 doi: 10.1098/rsta.1980.0079
    [9]
    Bhaduri A K, Srinivasan G, Klenk A, et al. Study of hot cracking behaviour of 14Cr-15Ni-2.5Mo Ti-modified fully austenitic stainless steels using varestraint and hot ductility tests. Weld World, 2009, 53(1-2): 17 doi: 10.1007/BF03266688
    [10]
    Li L J, Messler R W. Dissolution kinetics of NbC particles in the heat-affected zone of type 347 austenitic stainless steel. Metall Mater Trans A, 2002, 33(7): 2031 doi: 10.1007/s11661-002-0035-3
    [11]
    謝錫善, 于鴻垚, 遲成宇, 等. 用多種納米析出相復合強化鉻鎳型奧氏體耐熱鋼的方法: 中國專利, 201310718590.7, 2014-03-19

    Xie X S, Yu H Y, Chi C Y, et al. Method for Reinforcing Chromium-Nickel Type Austenitic Heat-Resistant Steel by Using Multiple Nano-Precipitation Phases: China Patent, 201310718590.7, 2014-03-19
    [12]
    Liu W, Lu F G, Yang R J, et al. Gleeble simulation of the HAZ in Inconel 617 welding. J Mater Process Technol, 2015, 225: 221 doi: 10.1016/j.jmatprotec.2015.06.001
    [13]
    彭志方, 任文, 楊超, 等. HR3C鋼運行過熱器管的脆化與晶界M23C6相參量演化的關系. 金屬學報, 2015, 51(11): 1325 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201511004.htm

    Peng Z F, Ren W, Yang C, et al. Relationship between the evolution of phase parameters of grain boundary M23C6 and embrittlement of HR3C super-heater tubes in service. Acta Metall Sin, 2015, 51(11): 1325 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201511004.htm
    [14]
    張正延, 李昭東, 雍岐龍, 等. 升溫過程中Nb和Nb-Mo微合金化鋼中碳化物的析出行為研究. 金屬學報, 2015, 51(3): 315 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201503007.htm

    Zhang Z Y, Li Z D, Yong Q L, et al. Precipitation behavior of carbide during heating process in Nb and Nb-Mo micro-alloyed steels. Acta Metall Sin, 2015, 51(3): 315 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201503007.htm
    [15]
    黃澤文. 微合金化鋼的碳氮化物在奧氏體中的行為. 四川冶金, 1988(2): 51 https://www.cnki.com.cn/Article/CJFDTOTAL-SCYJ198802011.htm

    Huang Z W. Behavior of carbonitrides in micro-alloyed steels in austenite. Sichuan Metall, 1988(2): 51 https://www.cnki.com.cn/Article/CJFDTOTAL-SCYJ198802011.htm
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views (1037) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频