Citation: | LIU Peng-cheng, XU Xiang-yu, LIU Qian-nan, LI Jian-zhe, LIU Dan, YAN Ze-peng, SUN Ming-yu, WANG Xue-min. Solid solution and precipitation behavior of Nb in Al-bearing ferritic steels[J]. Chinese Journal of Engineering, 2019, 41(7): 882-888. doi: 10.13374/j.issn2095-9389.2019.07.006 |
[1] |
Pramanik S, Koppoju S, Anupama A V, et al. Strengthening mechanisms in Fe-Al based ferritic low-density steels. Mater Sci Eng A, 2018, 712: 574 doi: 10.1016/j.msea.2017.10.056
|
[2] |
Chen S P, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels. Prog Mater Sci, 2017, 89: 345 doi: 10.1016/j.pmatsci.2017.05.002
|
[3] |
Xu X Y, Li J Z, Wang X M, et al. Softening and recrystallization behavior of a new class of ferritic steel. J. Iron Steel Res Int, 2019, 26(2): 154 doi: 10.1007/s42243-019-00230-0
|
[4] |
Gutierrez-Urrutia I, Raabe D. High strength and ductile low density austenitic FeMnAlC steels: simplex and alloys strengthened by nanoscale ordered carbides. Mater Sci Technol, 2014, 30(9): 1099 doi: 10.1179/1743284714Y.0000000515
|
[5] |
Lilly A C, Deevi S C, Gibbs Z P. Electrical properties of iron aluminides. Mater Sci Eng A, 1998, 258(1-2): 42 doi: 10.1016/S0921-5093(98)00915-0
|
[6] |
Rana R, Liu C, Ray R K. Low-density low-carbon Fe-Al ferritic steels. Scripta Mater, 2013, 68(6): 354 doi: 10.1016/j.scriptamat.2012.10.004
|
[7] |
Ghosh S, Mula S. Thermomechanical processing of low carbon Nb-Ti stabilized microalloyed steel: microstructure and mechanical properties. Mater Sci Eng A, 2015, 646: 218 doi: 10.1016/j.msea.2015.08.072
|
[8] |
Hu H J, Xu G, Wang L, et al. The effects of Nb and Mo addition on transformation and properties in low carbon bainitic steels. Mater Des, 2015, 84: 95 doi: 10.1016/j.matdes.2015.06.133
|
[9] |
Deardo A J. Niobium in modern steels. Int Mater Rev, 2003, 48(6): 371 doi: 10.1179/095066003225008833
|
[10] |
Baker T N. Microalloyed steels. Ironmaking Steelmaking, 2016, 43(4): 264 doi: 10.1179/1743281215Y.0000000063
|
[11] |
Cao Y B, Xiao F R, Qiao G Y, et al. Strain-induced precipitation and softening behaviors of high Nb microalloyed steels. Mater Sci Eng A, 2012, 552: 502 doi: 10.1016/j.msea.2012.05.078
|
[12] |
Hutchinson C R, Zurob H S, Sinclair C W, et al. The comparative effectiveness of Nb solute and NbC precipitates at impeding grain-boundary motion in Nb steels. Scripta Mater, 2008, 59(6): 635 doi: 10.1016/j.scriptamat.2008.05.036
|
[13] |
Wu H B, Ju B, Tang D, et al. Effect of Nb addition on the microstructure and mechanical properties of an 1800 MPa ultrahigh strength steel. Mater Sci Eng A, 2015, 622: 61 doi: 10.1016/j.msea.2014.11.005
|
[14] |
Zhao H, Wynne B P, Palmiere E J. Effect of austenite grain size on the bainitic ferrite morphology and grain refinement of a pipeline steel after continuous cooling. Mater Charact, 2017, 123: 128 doi: 10.1016/j.matchar.2016.11.025
|
[15] |
鄭魯, 雍岐龍, 孫珍寶. 碳化鈮在微合金鋼中的溶解. 金屬學報, 1987, 23(6): 547 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB198706017.htm
Zheng L, Yong Q L, Sun Z B. Solubility of niobium carbide in a microalloy steel. Acta Metall Sin, 1987, 23(6): 547 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB198706017.htm
|
[16] |
Wang F M, Li X P, Han Q Y, et al. A model for calculating interaction coefficients between elements in liquid and iron-base alloy. Metall Mater Trans B, 1997, 28(1): 109 doi: 10.1007/s11663-997-0133-0
|
[17] |
郝士明. 材料熱力學. 北京: 化學工業出版社, 2004
Hao S M. Material Thermodynamics. Beijing: Chemical Industry Press, 2004
|
[18] |
石霖. 合金熱力學. 北京: 機械工業出版社, 1992
Shi L. Alloy Thermodynamics. Beijing: Mechanical Industry Press, 1992
|
[19] |
雍岐龍. 鋼鐵材料中的第二相. 北京: 冶金工業出版社, 2006
Yong Q L. Secondary Phases in Steel. Beijing: Metallurgical Industry Press, 2006
|