<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 7
Jul.  2019
Turn off MathJax
Article Contents
LIU Peng-cheng, XU Xiang-yu, LIU Qian-nan, LI Jian-zhe, LIU Dan, YAN Ze-peng, SUN Ming-yu, WANG Xue-min. Solid solution and precipitation behavior of Nb in Al-bearing ferritic steels[J]. Chinese Journal of Engineering, 2019, 41(7): 882-888. doi: 10.13374/j.issn2095-9389.2019.07.006
Citation: LIU Peng-cheng, XU Xiang-yu, LIU Qian-nan, LI Jian-zhe, LIU Dan, YAN Ze-peng, SUN Ming-yu, WANG Xue-min. Solid solution and precipitation behavior of Nb in Al-bearing ferritic steels[J]. Chinese Journal of Engineering, 2019, 41(7): 882-888. doi: 10.13374/j.issn2095-9389.2019.07.006

Solid solution and precipitation behavior of Nb in Al-bearing ferritic steels

doi: 10.13374/j.issn2095-9389.2019.07.006
More Information
  • Corresponding author: WANG Xue-min, E-mail: wxm@mater.ustb.edu.cn
  • Received Date: 2019-01-12
  • Publish Date: 2019-07-01
  • With the rapid development of the global economy, problems in energy production and environmental protection are becoming severe. To reduce fuel consumption and CO2 emissions, it is essential to reduce the weight of automobiles and other huge construction structures. Recently, a number of studies have been conducted on the use of low-density steels for automobile applications by incorporating aluminum in steel. The light elements can increase the lattice constant of steel while reducing the density of steel to achieve a lower atomic weight. Aluminum as a light element replaces the iron atoms in the unit cell, increasing the volume while reducing the weight, thereby reducing the density of steels. In this regard, ferritic Fe-8%Al steels indicated a 10% reduction in density compared with the conventional steels. To clarify the solid solution and precipitation behavior of Nb in Al-bearing ferritic steels, heat treatment tests were carried out under a series of temperature. The precipitates of NbC and the dissolved Nb solute in ferrite matrix with high Al content were studied using electrolytic dissolution technique, X-ray diffraction technique, and inductively coupled plasma-atomic emission spectrometry (ICP-AES). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were also applied. The experimental results show that the precipitates are NbC and also some Al2O3 and AlN inclusions. It is also found that with increase in the solution temperatures, the NbC in the as-cast samples becomes fewer and the coarsening behavior occurs. Moreover, when the temperature was over 1100℃, almost all the precipitates were dissolved. Furthermore, using Thermo-Calc software, the thermodynamic properties of Nb and relevant compounds were studied, and the interaction coefficient between Al an Nb was calculated. The results indicate that Al decreases the activity of Nb, and the solubility of NbC increases. Finally, the solid solubility formula of NbC was deduced, which can provide a basis for further application of ferritic steels with a high Al content.

     

  • loading
  • [1]
    Pramanik S, Koppoju S, Anupama A V, et al. Strengthening mechanisms in Fe-Al based ferritic low-density steels. Mater Sci Eng A, 2018, 712: 574 doi: 10.1016/j.msea.2017.10.056
    [2]
    Chen S P, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels. Prog Mater Sci, 2017, 89: 345 doi: 10.1016/j.pmatsci.2017.05.002
    [3]
    Xu X Y, Li J Z, Wang X M, et al. Softening and recrystallization behavior of a new class of ferritic steel. J. Iron Steel Res Int, 2019, 26(2): 154 doi: 10.1007/s42243-019-00230-0
    [4]
    Gutierrez-Urrutia I, Raabe D. High strength and ductile low density austenitic FeMnAlC steels: simplex and alloys strengthened by nanoscale ordered carbides. Mater Sci Technol, 2014, 30(9): 1099 doi: 10.1179/1743284714Y.0000000515
    [5]
    Lilly A C, Deevi S C, Gibbs Z P. Electrical properties of iron aluminides. Mater Sci Eng A, 1998, 258(1-2): 42 doi: 10.1016/S0921-5093(98)00915-0
    [6]
    Rana R, Liu C, Ray R K. Low-density low-carbon Fe-Al ferritic steels. Scripta Mater, 2013, 68(6): 354 doi: 10.1016/j.scriptamat.2012.10.004
    [7]
    Ghosh S, Mula S. Thermomechanical processing of low carbon Nb-Ti stabilized microalloyed steel: microstructure and mechanical properties. Mater Sci Eng A, 2015, 646: 218 doi: 10.1016/j.msea.2015.08.072
    [8]
    Hu H J, Xu G, Wang L, et al. The effects of Nb and Mo addition on transformation and properties in low carbon bainitic steels. Mater Des, 2015, 84: 95 doi: 10.1016/j.matdes.2015.06.133
    [9]
    Deardo A J. Niobium in modern steels. Int Mater Rev, 2003, 48(6): 371 doi: 10.1179/095066003225008833
    [10]
    Baker T N. Microalloyed steels. Ironmaking Steelmaking, 2016, 43(4): 264 doi: 10.1179/1743281215Y.0000000063
    [11]
    Cao Y B, Xiao F R, Qiao G Y, et al. Strain-induced precipitation and softening behaviors of high Nb microalloyed steels. Mater Sci Eng A, 2012, 552: 502 doi: 10.1016/j.msea.2012.05.078
    [12]
    Hutchinson C R, Zurob H S, Sinclair C W, et al. The comparative effectiveness of Nb solute and NbC precipitates at impeding grain-boundary motion in Nb steels. Scripta Mater, 2008, 59(6): 635 doi: 10.1016/j.scriptamat.2008.05.036
    [13]
    Wu H B, Ju B, Tang D, et al. Effect of Nb addition on the microstructure and mechanical properties of an 1800 MPa ultrahigh strength steel. Mater Sci Eng A, 2015, 622: 61 doi: 10.1016/j.msea.2014.11.005
    [14]
    Zhao H, Wynne B P, Palmiere E J. Effect of austenite grain size on the bainitic ferrite morphology and grain refinement of a pipeline steel after continuous cooling. Mater Charact, 2017, 123: 128 doi: 10.1016/j.matchar.2016.11.025
    [15]
    鄭魯, 雍岐龍, 孫珍寶. 碳化鈮在微合金鋼中的溶解. 金屬學報, 1987, 23(6): 547 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB198706017.htm

    Zheng L, Yong Q L, Sun Z B. Solubility of niobium carbide in a microalloy steel. Acta Metall Sin, 1987, 23(6): 547 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB198706017.htm
    [16]
    Wang F M, Li X P, Han Q Y, et al. A model for calculating interaction coefficients between elements in liquid and iron-base alloy. Metall Mater Trans B, 1997, 28(1): 109 doi: 10.1007/s11663-997-0133-0
    [17]
    郝士明. 材料熱力學. 北京: 化學工業出版社, 2004

    Hao S M. Material Thermodynamics. Beijing: Chemical Industry Press, 2004
    [18]
    石霖. 合金熱力學. 北京: 機械工業出版社, 1992

    Shi L. Alloy Thermodynamics. Beijing: Mechanical Industry Press, 1992
    [19]
    雍岐龍. 鋼鐵材料中的第二相. 北京: 冶金工業出版社, 2006

    Yong Q L. Secondary Phases in Steel. Beijing: Metallurgical Industry Press, 2006
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article views (1135) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频