<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 7
Jul.  2019
Turn off MathJax
Article Contents
ZHANG Ying, MIAO Sheng-jun, GUO Qi-feng, WANG Pei-tao. Meso-energy evolution and rock burst proneness of the stress thresholds of granite under triaxial cyclic loading and unloading test[J]. Chinese Journal of Engineering, 2019, 41(7): 864-873. doi: 10.13374/j.issn2095-9389.2019.07.004
Citation: ZHANG Ying, MIAO Sheng-jun, GUO Qi-feng, WANG Pei-tao. Meso-energy evolution and rock burst proneness of the stress thresholds of granite under triaxial cyclic loading and unloading test[J]. Chinese Journal of Engineering, 2019, 41(7): 864-873. doi: 10.13374/j.issn2095-9389.2019.07.004

Meso-energy evolution and rock burst proneness of the stress thresholds of granite under triaxial cyclic loading and unloading test

doi: 10.13374/j.issn2095-9389.2019.07.004
More Information
  • Corresponding author: MIAO Sheng-jun, E-mail: miaoshengjun@163.com
  • Received Date: 2018-07-04
  • Publish Date: 2019-07-01
  • To study the meso-energy evolution of Sanshandao granite under triaxial cyclic loading and unloading, the stress thresholds (the crack initiation stress σci, crack damage stress σcd, and peak stress σf) of Sanshandao granite were determined; the variation law of the boundary energy, strain energy (linear contact strain energy and parallel bond strain energy), dissipation energy (friction energy and damping energy), and kinetic energy corresponding to each stress threshold with confining pressures was analyzed; and a new index Wx for evaluating the rock burst proneness was established from the perspective of energy based on a simulation using PFC3D. The results show that the corresponding σci/σf is in the range of 37.0% to 44.8%, and σcd/σf is in the range of 81.2% to 89.0% under different confining pressures. With the increase of confining pressure, the boundary energy, strain energy, and dissipation energy of the crack initiation increase linearly, and the boundary energy, strain energy, and dissipation energy of the crack damage and peak increase exponentially. Among them, the dissipation energy exhibits the maximum increment with the change in confining pressure, followed by the boundary energy, and then the strain energy. The confining pressure has little effect on the proportion of the strain energy of crack initiation. Moreover, with increasing pressure, the proportion of the crack damage and the peak strain energy decrease slowly; however, the proportion of peak strain energy decreases to a greater extent. According to the new index Wx for the evaluation of the rock burst proneness, when the confining pressure was less than 20 MPa, the rock burst proneness of Sanshandao granite was relatively small, and when the confining pressure reached 30 MPa, the rock burst proneness began to increase rapidly. This study provides a new reference index for the evaluation of rock burst proneness and further provides a new idea for the stability study of underground rock mass engineering.

     

  • loading
  • [1]
    周輝, 孟凡震, 張傳慶, 等. 硬巖應力-應變門檻值特點及產生機制. 巖石力學與工程學報, 2015, 34(8): 1513 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201508002.htm

    Zhou H, Meng F Z, Zhang C Q, et al. Characteristics and mechanism of occurrence of stress thresholds and corresponding strain for hard rock. Chin J Rock Mech Eng, 2015, 34(8): 1513 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201508002.htm
    [2]
    衡帥, 楊春和, 李芷, 等. 基于能量耗散的頁巖脆性特征. 中南大學學報(自然科學版), 2016, 47(2): 577 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201602030.htm

    Heng S, Yang C H, Li Z, et al. Shale brittleness estimation based on energy dissipation. J Cent South Univ Sci Technol, 2016, 47(2): 577 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201602030.htm
    [3]
    溫韜, 唐輝明, 劉佑榮, 等. 不同圍壓下板巖三軸壓縮過程能量及損傷分析. 煤田地質與勘探, 2016, 44(3): 80 doi: 10.3969/j.issn.1001-1986.2016.03.015

    Wen T, Tang H M, Liu Y R, et al. Energy and damage analysis of slate during triaxial compression under different confining pressures. Coal Geol Expl, 2016, 44(3): 80 doi: 10.3969/j.issn.1001-1986.2016.03.015
    [4]
    鄧華鋒, 胡玉, 李建林, 等. 循環加卸載過程中砂巖能量耗散演化規律. 巖石力學與工程學報, 2016, 35(增刊1): 2869 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S1032.htm

    Deng H F, Hu Y, Li J L, et al. The evolution of sandstone energy dissipation under cyclic loading and unloading. Chin J Rock Mech Eng, 2016, 35(Suppl 1): 2869 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S1032.htm
    [5]
    謝和平, 鞠楊, 黎立云, 等. 巖體變形破壞過程的能量機制. 巖石力學與工程學報, 2008, 27(9): 1729 doi: 10.3321/j.issn:1000-6915.2008.09.001

    Xie H P, Ju Y, Li L Y, et al. Energy mechanism of deformation and failure of rock masses. Chin J Rock Mech Eng, 2008, 27(9): 1729 doi: 10.3321/j.issn:1000-6915.2008.09.001
    [6]
    張志鎮, 高峰. 3種巖石能量演化特征的試驗研究. 中國礦業大學學報, 2015, 44(3): 416 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201503004.htm

    Zhang Z Z, Gao F. Experimental investigations on energy evolution characteristics of coal, sandstone and granite during loading process. J China Univ Mining Technol, 2015, 44(3): 416 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201503004.htm
    [7]
    Kidybiński A. Bursting liability indices of coal. Int J Rock Mech Min Sci Geomech Abstracts, 1981, 18(4): 295 doi: 10.1016/0148-9062(81)91194-3
    [8]
    Wang J A, Park H D. Comprehensive prediction of rock burst based on analysis of strain energy in rocks. Tunnell Undergr Space Technol, 2001, 16(1): 49 doi: 10.1016/S0886-7798(01)00030-X
    [9]
    Aubertin M, Gill D E, Simon R. On the use of the brittleness index modified (BIM) to estimate the post-peak behavior or rocks//1st North American Rock Mechanics Symposium. Austin, 1994: ARMA-1994-0945
    [10]
    劉樹新, 魯思佐, 陳陽. 基于多重判據的某深部礦區巖爆傾向性研究. 礦業研究與開發, 2017, 37(2): 9 https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201702003.htm

    Liu S X, Lu S Z, Chen Y. Study on rockburst proneness of a deep mine based on multiple criterions. Min Res Dev, 2017, 37(2): 9 https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201702003.htm
    [11]
    唐禮忠, 潘長良, 王文星. 用于分析巖爆傾向性的剩余能量指數. 中南工業大學學報, 2002, 33(2): 129 doi: 10.3969/j.issn.1672-3104.2002.02.004

    Tang L Z, Pan C L, Wang W X. Surplus energy index for analyzing rock burst proneness. J Cent South Univ Technol, 2002, 33(2): 129 doi: 10.3969/j.issn.1672-3104.2002.02.004
    [12]
    唐禮忠, 王文星. 一種新的巖爆傾向性指標. 巖石力學與工程學報, 2002, 21(6): 874 doi: 10.3321/j.issn:1000-6915.2002.06.022

    Tang L Z, Wang W X. New rock burst proneness index. Chin J Rock Mech Eng, 2002, 21(6): 874 doi: 10.3321/j.issn:1000-6915.2002.06.022
    [13]
    Simon R. Analysis of Fault-Slip Mechanisms in Hard Rock Mining [Dissertation]. Montreal: McGill University, 1999
    [14]
    Potyondy D O, Cundall P A. A bonded-particle model for rock. Int J Rock Mech Min Sci, 2004, 41(8): 1329 doi: 10.1016/j.ijrmms.2004.09.011
    [15]
    Martin C D, Chandler N A. The progressive fracture of Lac du Bonnet granite. Int J Rock Mech Min Sci Geomech Abstracts, 1994, 31(6): 643 doi: 10.1016/0148-9062(94)90005-1
    [16]
    Brace W F, Paulding Jr B W, Scholz C H. Dilatancy in the fracture of crystalline rocks. J Geophys Res, 1966, 71(16): 3939 doi: 10.1029/JZ071i016p03939
    [17]
    Hoek E, Bieniawski Z T. Brittle fracture propagation in rock under compression. Int J Fract Mech, 1965, 1(3): 137
    [18]
    Hallbauer D K, Wagner H, Cook N G W. Some observations concerning the microscopic and mechanical behaviour of quartzite specimens in stiff, triaxial compression tests. Int J Rock Mech Min Sci Geomech Abstracts, 1973, 10(6): 713 doi: 10.1016/0148-9062(73)90015-6
    [19]
    Singh S P. Classification of mine workings according to their rockburst proneness. Min Sci Technol, 1989, 8(3): 253 doi: 10.1016/S0167-9031(89)90404-0
    [20]
    蔡美峰, 冀東, 郭奇峰. 基于地應力現場實測與開采擾動能量積聚理論的巖爆預測研究. 巖石力學與工程學報, 2013, 32(10): 1973 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201310003.htm

    Cai M F, Ji D, Guo Q F. Study of rockburst prediction based on in-situ stress measurement and theory of energy accumulation caused by mining disturbance. Chin J Rock Mech Eng, 2013, 32(10): 1973 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201310003.htm
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article views (936) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频