Citation: | SUN Xue-wen, YANG Hai-bo, MI Tao. Heat transfer and ablation of carbon/carbon composites based on multi-field coupling[J]. Chinese Journal of Engineering, 2020, 42(8): 1040-1047. doi: 10.13374/j.issn2095-9389.2019.06.30.002 |
[1] |
Karimi M S, Oboodi M J. Investigation and recent developments in aerodynamic heating and drag reduction for hypersonic flows. <italic>Heat Mass Transfer</italic>, 2019, 55(2): 547 doi: 10.1007/s00231-018-2416-1
|
[2] |
王璐, 王友利. 高超聲速飛行器熱防護技術研究進展和趨勢分析. 宇航材料工藝, 2016, 46(1):1 doi: 10.3969/j.issn.1007-2330.2016.01.001
Wang L, Wang Y L. Research progress and trend analysis of hypersonic vehicle thermal protection technology. <italic>Aerosp Mater Technol</italic>, 2016, 46(1): 1 doi: 10.3969/j.issn.1007-2330.2016.01.001
|
[3] |
Sziroczak D, Smith H. A review of design issues specific to hypersonic flight vehicles. <italic>Prog Aerosp Sci</italic>, 2016, 84: 1 doi: 10.1016/j.paerosci.2016.04.001
|
[4] |
Gulli S, Maddalena L. Arc-jet testing of a variable-transpiration-cooled and uncoated carbon–carbon nose cone. <italic>J Spacecraft Rockets</italic>, 2019, 56(3): 780 doi: 10.2514/1.A34176
|
[5] |
李仲平. 防熱復合材料發展與展望. 復合材料學報, 2011, 28(2):1
Li Z P. Major advancement and development trends of TPS composites. <italic>Acta Mater Compos Sin</italic>, 2011, 28(2): 1
|
[6] |
Albano M, Alifanov O M, Budnik S A, et al. Carbon/carbon high thickness shell for advanced space vehicles. <italic>Int J Heat Mass Transfer</italic>, 2019, 128: 613 doi: 10.1016/j.ijheatmasstransfer.2018.05.106
|
[7] |
Stern E C, Poovathingal S, Nompelis I, et al. Nonequilibrium flow through porous thermal protection materials, Part I: Numerical methods. <italic>J Comput Phys</italic>, 2019, 380: 408 doi: 10.1016/j.jcp.2017.09.011
|
[8] |
Natali M, Kenny J M, Torre L. Science and technology of polymeric ablative materials for thermal protection systems and propulsion devices: a review. <italic>Prog Mater Sci</italic>, 2016, 84: 192 doi: 10.1016/j.pmatsci.2016.08.003
|
[9] |
Wang Y Q, Risch T K, Koo J H. Assessment of a one-dimensional finite element charring ablation material response model for phenolic-impregnated carbon ablator. <italic>Aerosp Sci Technol</italic>, 2019, 91: 301 doi: 10.1016/j.ast.2019.05.039
|
[10] |
Tang S F, Hu C L. Design, preparation and properties of carbon fiber reinforced ultra-high temperature ceramic composites for aerospace applications: a review. <italic>J Mater Sci Technol</italic>, 2017, 33(2): 117 doi: 10.1016/j.jmst.2016.08.004
|
[11] |
Lee S, Park G, Kim J G, et al. Evaluation system for ablative material in a high-temperature torch. <italic>Int J Aeronaut Space Sci</italic>, 2019, 20: 620 doi: 10.1007/s42405-019-00185-2
|
[12] |
Helber B, Dias B, Bariselli F, et al. Analysis of meteoroid ablation based on plasma wind-tunnel experiments, surface characterization, and numerical simulations. <italic>Astrophys J</italic>, 2019, 876(2): 120 doi: 10.3847/1538-4357/ab16f0
|
[13] |
Zhang K L, Bai S X, Zhu L, et al. Ablation and surface heating behaviors of graphite based Ir-Al coating in a plasma wind tunnel. <italic>Surf Coat Technol</italic>, 2019, 358: 371 doi: 10.1016/j.surfcoat.2018.10.047
|
[14] |
Martin A, Boyd I D. Strongly coupled computation of material response and nonequilibrium flow for hypersonic ablation. <italic>J Spacecraft Rockets</italic>, 2015, 52(1): 89 doi: 10.2514/1.A32847
|
[15] |
Cross P G, Boyd I D. Reduced reaction mechanism for rocket nozzle ablation simulations. <italic>J Thermophys Heat Transfer</italic>, 2018, 32(2): 429 doi: 10.2514/1.T5291
|
[16] |
Mortensen C H, Zhong X L. Real gas and surface ablation effects on hypersonic boundary layer instability over a blunt cone. <italic>AIAA J</italic>, 2013, 54(3): 976
|
[17] |
Chen Y K, Milos F S. Multidimensional finite volume fully implicit ablation and thermal response code. <italic>J Spacecraft Rockets</italic>, 2018, 55(4): 914 doi: 10.2514/1.A34184
|
[18] |
Chen Y K, G?k?en T, Edquist K T. Two-dimensional ablation and thermal response analyses for mars science laboratory heat shield. <italic>J Spacecraft Rockets</italic>, 2015, 52(1): 134 doi: 10.2514/1.A32868
|
[19] |
Kumar R. Numerical investigation of gas-surface interactions due to ablation of high-speed vehicles. <italic>J Spacecraft Rockets</italic>, 2016, 53(3): 538 doi: 10.2514/1.A33433
|
[20] |
Li W J, Huang H M, Tian Y, et al. Nonlinear analysis on thermal behavior of charring materials with surface ablation. <italic>Int J Heat Mass Transfer</italic>, 2015, 84: 245 doi: 10.1016/j.ijheatmasstransfer.2015.01.004
|
[21] |
Candler G V, Alba C R, Greendyke R B. Characterization of carbon ablation models including effects of gas-phase chemical kinetics. <italic>J Thermophys Heat Transfer</italic>, 2017, 31(3): 512 doi: 10.2514/1.T4752
|
[22] |
Qin F, Peng L N, Li J, et al. Numerical simulations of multiscale ablation of carbon/carbon throat with morphology effects. <italic>AIAA J</italic>, 2017, 55(10): 3476 doi: 10.2514/1.J055534
|
[23] |
Yin T T, Zhang Z W, Li X F, et al. Modeling ablative behavior and thermal response of carbon/carbon composites. <italic>Comput Mater Sci</italic>, 2014, 95: 35 doi: 10.1016/j.commatsci.2014.07.013
|
[24] |
Meng S H, Zhou Y J, Xie W H, et al. Multiphysics coupled fluid/thermal/ablation simulation of carbon/carbon composites. <italic>J Spacecraft Rockets</italic>, 2016, 53(5): 930 doi: 10.2514/1.A33612
|
[25] |
Chen W. Numerical analyses of ablative behavior of C/C composite materials. <italic>Int J Heat Mass Transfer</italic>, 2016, 95: 720 doi: 10.1016/j.ijheatmasstransfer.2015.12.031
|
[26] |
Gupta R N, Yos J M, Thompson R A, et al. A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K. <italic>NASA Reference Publication 1232</italic>, 1990
|