<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 6
Jun.  2020
Turn off MathJax
Article Contents
LI Qian, ZHAO Ai-min, GUO Jun, PEI Wei, LIU Su-peng. Crack propagation behavior of ER8 wheel steel containing upper bainite[J]. Chinese Journal of Engineering, 2020, 42(6): 747-754. doi: 10.13374/j.issn2095-9389.2019.06.27.002
Citation: LI Qian, ZHAO Ai-min, GUO Jun, PEI Wei, LIU Su-peng. Crack propagation behavior of ER8 wheel steel containing upper bainite[J]. Chinese Journal of Engineering, 2020, 42(6): 747-754. doi: 10.13374/j.issn2095-9389.2019.06.27.002

Crack propagation behavior of ER8 wheel steel containing upper bainite

doi: 10.13374/j.issn2095-9389.2019.06.27.002
More Information
  • In recently years, high-speed and heavy-haul railway technology has been rapidly developed and widely used in China. Pearlite steel is usually used in railway wheels, and its structure is composed of pearlite and ferrite. Pearlite has properties, including mechanical properties, that combine those of ferrite and cementite, and it also has acceptable strength and toughness. The comprehensive mechanical properties of pearlite are better than those of ferrite or cementite alone. When upper bainite is produced after the heat-treatment of ER8 wheel steel, the upper bainite may become the channel of crack development because of the large carbide particles and the weak strengthening effect and especially because of the presence of flake ferrites. In this study, the influence of different contents of upper bainite on the crack propagation behavior of ER8 wheel steel was investigated. The microstructure and crack growth path of ER8 wheel steel were studied by laser scanning confocal microscopy (LSCM) and scanning electron microscopy (SEM). The experimental results show that ER8 wheel steels not only have ferrite and pearlite but also upper bainite. The crack propagates through the upper bainite and pearlite and finally stops in the pearlite region. Compared with the pearlite microstructure, the crack propagation path in the upper bainite is more tortuous. The crack propagation and deformation of ER8 wheel steels were observed in situ by scanning electron microscopy. The experimental results show that when ER8 iron wheel steel containing 80% upper bainite is stretched, the microstructure deformation process is mainly ferrite and upper bainite. The crack in the upper bainite and the pearlite continues to expand with the pearlite deformation. However, when ER8 iron wheel steel containing 50% upper bainite is stretched, the deformation process mainly involves ferrite and pearlite, and the upper bainite retards the ferrite and pearlite deformation. The upper bainite can effectively prevent crack growth and plays an important role in deflecting crack path and delaying crack growth. Moreover, it hinders the deformation of ferrite and pearlite.

     

  • loading
  • [1]
    段桂花, 張平, 李金許, 等. 鐵素體和珠光體含量影響變形過程的原位研究. 北京科技大學學報, 2014, 36(8):1032

    Duan G H, Zhang P, Li J X, et al. In situ studies on the effect of ferrite and pearlite contents on the deformation process. J Univ Sci Technol Beijing, 2014, 36(8): 1032
    [2]
    Zeng D F, Lu L T, Gong Y H, et al. Optimization of strength and toughness of railway wheel steel by alloy design. Mater Des, 2016, 92: 998 doi: 10.1016/j.matdes.2015.12.096
    [3]
    Liu Z X, Gu H C. The in-situ fatigue crack observation of wheel steels. Prakt Metallogr, 2002, 39(4): 21
    [4]
    Xie Y J, Hu X Z, Wang X H, et al. A theoretical note on mode-I crack branching and kinking. Eng Fract Mech, 2011, 78(6): 919 doi: 10.1016/j.engfracmech.2011.01.023
    [5]
    Hamada S, Sasaki D, Ueda M, et al. Fatigue limit evaluation considering crack initiation for lamellar pearlitic steel. Procedia Eng, 2011, 10: 1467 doi: 10.1016/j.proeng.2011.04.245
    [6]
    Mutoh Y, Korda A A, Miyashita Y, et al. Stress shielding and fatigue crack growth resistance in ferritic–pearlitic steel. Mater Sci Eng A, 2007, 468-470: 114 doi: 10.1016/j.msea.2006.07.171
    [7]
    Zhang W, Liu Y M. Investigation of incremental fatigue crack growth mechanisms using in situ SEM testing. Int J Fatigue, 2012, 42: 14 doi: 10.1016/j.ijfatigue.2011.03.004
    [8]
    Toribio J, González B, Matos J C. Micro-and macro-analysis of the fatigue crack growth in pearlitic steels. Ciênc Tecnol Mater, 2008, 20(1-2): 68
    [9]
    Maya-Johnson S, Ramirez A J, Toro A. Fatigue crack growth rate of two pearlitic rail steels. Eng Fract Mech, 2015, 138: 63 doi: 10.1016/j.engfracmech.2015.03.023
    [10]
    Guan M F, Yu H. Fatigue crack growth behaviors in hot-rolled low carbon steels: a comparison between ferrite–pearlite and ferrite–bainite microstructures. Mater Sci Eng A, 2013, 559: 875 doi: 10.1016/j.msea.2012.09.036
    [11]
    陳林, 郭飛翔, 王慧軍, 等. 微觀組織對U20Mn貝氏體鋼疲勞裂紋擴展行為的影響. 材料熱處理學報, 2018, 39(2):119

    Chen L, Guo F X, Wang H J, et al. Effect of microstructure on fatigue crack propagation behavior of U20Mn bainite steel. Trans Mater Heat Treat, 2018, 39(2): 119
    [12]
    孫志永, 周華, 程先華. 含有初始裂紋的低碳貝氏體鋼的沖擊韌性. 上海交通大學學報, 2016, 50(7):1000

    Sun Z Y, Zhou H, Cheng X H. Impact toughness of low-carbon bainite steel with initial cracks. J Shanghai Jiaotong Univ, 2016, 50(7): 1000
    [13]
    Teshima T, Kosaka M, Ushioda K, et al. Local cementite cracking induced by heterogeneous plastic deformation in lamellar pearlite. Mater Sci Eng A, 2017, 679: 223 doi: 10.1016/j.msea.2016.10.018
    [14]
    Masoumi M, Sinatora A, Goldenstein H. Role of microstructure and crystallographic orientation in fatigue crack failure analysis of a heavy haul railway rail. Eng Fail Anal, 2019, 96: 320 doi: 10.1016/j.engfailanal.2018.10.022
    [15]
    Korda A A, Mutoh Y, Miyashita Y, et al. In situ observation of fatigue crack retardation in banded ferrite–pearlite microstructure due to crack branching. Scripta Mater, 2006, 54(11): 1835 doi: 10.1016/j.scriptamat.2006.02.025
    [16]
    Eden H C, Garnham J E, Davis C L. Influential microstructural changes on rolling contact fatigue crack initiation in pearlitic rail steels. Mater Sci Technol, 2005, 21(6): 623 doi: 10.1179/174328405X43207
    [17]
    Garnham J E, Davis C L. The role of deformed rail microstructure on rolling contact fatigue initiation. Wear, 2008, 265(9-10): 1363 doi: 10.1016/j.wear.2008.02.042
    [18]
    Tomota Y, Watanabe O, Kanie A, et al. Effect of carbon concentration on tensile behaviour of pearlitic steels. Mater Sci Technol, 2003, 19(12): 1715 doi: 10.1179/026708303225008310
    [19]
    Pardoen T, Dumont D, Deschamps A, et al. Grain boundary versus transgranular ductile failure. J Mech Phys Solids, 2003, 51(4): 637 doi: 10.1016/S0022-5096(02)00102-3
    [20]
    汪金余, 孫傳喜, 張軍. 內部存在裂紋的輪軌接觸力學分析. 大連交通大學學報, 2017, 38(6):50

    Wang J Y, Sun C X, Zhang J. Wheel-rail contact mechanics analysis of internal cracks. J Dalian Jiaotong Univ, 2017, 38(6): 50
    [21]
    Maya-Johnson S, Santa J F, Toro A. Dry and lubricated wear of rail steel under rolling contact fatigue-Wear mechanisms and crack growth. Wear, 2017, 380-381: 240 doi: 10.1016/j.wear.2017.03.025
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article views (1760) PDF downloads(78) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频