<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 11
Dec.  2019
Turn off MathJax
Article Contents
QI Qian, ZHU Wei-yao. Moving boundary analysis of fractured shale gas reservoir[J]. Chinese Journal of Engineering, 2019, 41(11): 1387-1396. doi: 10.13374/j.issn2095-9389.2019.06.21.002
Citation: QI Qian, ZHU Wei-yao. Moving boundary analysis of fractured shale gas reservoir[J]. Chinese Journal of Engineering, 2019, 41(11): 1387-1396. doi: 10.13374/j.issn2095-9389.2019.06.21.002

Moving boundary analysis of fractured shale gas reservoir

doi: 10.13374/j.issn2095-9389.2019.06.21.002
More Information
  • Corresponding author: E-mail: qiqian0314@sina.com
  • Received Date: 2019-06-21
  • Publish Date: 2019-11-01
  • Shale gas reservoirs are extremely tight, their pores are mainly nano-micron size, and their gas flow resistance is greater than that of conventional gases. Thus, the flow with low-velocity non-Darcy seepage characteristics of diffusion, slippage, and desorption needs to be solved. Moreover, the fractured reservoir has a complicated structure of pores and fractures, which causes the problem of multi-scale flow. The pressure disturbance propagates over time and does not instantaneously reach infinity. Another problem is that the moving boundary pressure disturbance of unstable seepage propagates slowly with time. Based on the above issues, in this paper, the permeability model of fractal distribution and Gaussian distribution was obtained to describe the different fracturing characteristics. Using the method of successive replacements of steady states and considering desorption, diffusion, and slippage, the mathematical model of unstable flowing pressure disturbance in a multistage fractured horizontal well was established. The moving characteristics of the different fractured conditions were compared and analyzed. The research shows that the pressure moving boundary increases with time, and the lower the permeability, the slower the pressure boundary moves. In general, the shale gas reservoir pressure propagates slowly, the natural productivity of the gas well is low, and the velocity of the pressure moving boundary of the matrix reservoir is less than the fractal distribution of the fractured reservoir and less than the Gaussian distribution of the fractured reservoir. Thus, it is necessary to carry out the large-scale fracturing treatment and reasonable control of the fracturing degree to improve the permeability as well as the development effect. When the production time is 6000 days, based on the moving boundary of the fractured horizontal well, the horizontal section length was optimized to 90 m. The optimum well distance of the well with fractal distribution permeability was 318 m, while the well with Gaussian distribution permeability was 252 m. Thus, the fracture treatment scale should be reasonably controlled to achieve optimal production and high yield.

     

  • loading
  • [1]
    李凡華, 劉慈群. 含啟動壓力梯度的不定常滲流的壓力動態分析. 油氣井測試, 1997, 6(1):1

    Li F H, Liu C Q. Pressure transient analysis for unsteady porous flow with start-up pressure derivative. Well Test, 1997, 6(1): 1
    [2]
    劉慈群. 有起始比降固結問題的近似解. 巖土工程學報, 1982, 4(3):107 doi: 10.3321/j.issn:1000-4548.1982.03.010

    Liu C Q. Approximate solution of a starting gradient ratio consolidation problem. Chin J Geotech Eng, 1982, 4(3): 107 doi: 10.3321/j.issn:1000-4548.1982.03.010
    [3]
    朱圣舉. 低滲透油藏的壓力波傳播規律. 新疆石油地質, 2007, 28(1):85 doi: 10.3969/j.issn.1001-3873.2007.01.023

    Zhu S J. The propagation of pressure wave from low permeability reservoirs. Xinjiang Pet Geol, 2007, 28(1): 85 doi: 10.3969/j.issn.1001-3873.2007.01.023
    [4]
    王新海, 秦世勇, 劉洪, 等. 低滲非達西滲流調查半徑計算方法. 石油天然氣學報, 2008, 30(5):134 doi: 10.3969/j.issn.1000-9752.2008.05.033

    Wang X H, Qin S Y, Liu H, et al. Investigation radius calculation of non-darcy flow in low permeability media. J Oil Gas Technol, 2008, 30(5): 134 doi: 10.3969/j.issn.1000-9752.2008.05.033
    [5]
    喬煒, 王厲強, 張志剛, 等. 特低滲透油藏壓裂井的壓力波傳播規律. 新疆石油地質, 2012, 33(2):196

    Qiao W, Wang L Q, Zhang Z G, et al. Pressure wave propagation of fracturing well in ultra low permeability reservoir. Xinjiang Pet Geol, 2012, 33(2): 196
    [6]
    朱維耀, 亓倩, 馬千, 等. 頁巖氣不穩定滲流壓力傳播規律和數學模型. 石油勘探與開發, 2016, 43(2):261

    Zhu W Y, Qi Q, Ma Q, et al. Unstable seepage modeling and pressure propagation of shale gas reservoirs. Pet Explor Dev, 2016, 43(2): 261
    [7]
    朱維耀, 馬千, 鄧佳, 等. 納微米級孔隙氣體流動數學模型及應用. 北京科技大學學報, 2014, 36(6):709

    Zhu W Y, Ma Q, Deng J, et al. Mathematical model and application of gas flow in nano-micron pores. J Univ Sci Technol Beijing, 2014, 36(6): 709
    [8]
    張金川, 金之韻, 袁明生. 頁巖氣成藏機理和分布. 天然氣工業, 2004, 24(7):15 doi: 10.3321/j.issn:1000-0976.2004.07.005

    Zhang J C, Jin Z Y, Yuan M S. Reservoiring mechanism of shale gas and its distribution. Nat Gas Ind, 2004, 24(7): 15 doi: 10.3321/j.issn:1000-0976.2004.07.005
    [9]
    鄒才能, 董大忠, 王社教, 等. 中國頁巖氣形成機理、地質特征及資源潛力. 石油勘探與開發, 2010, 37(6):641

    Zou C N, Dong D Z, Wang S J, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China. Pet Explor Dev, 2010, 37(6): 641
    [10]
    亓倩, 朱維耀, 鄧佳, 等. 含微裂縫頁巖儲層滲流模型及壓裂井產能. 工程科學學報, 2016, 38(3):306

    Qi Q, Zhu W Y, Deng J, et al. Seepage model and productivity prediction of fractured wells in shale gas reservoirs with discontinuous micro-fractures. Chin J Eng, 2016, 38(3): 306
    [11]
    姚軍, 孫海, 樊冬艷, 等. 頁巖氣藏運移機制及數值模擬. 中國石油大學學報: 自然科學版, 2013, 37(1):91

    Yao J, Sun H, Fan D Y, et al. Transport mechanisms and numerical simulation of shale gas reservoirs. J China Univ Pet, 2013, 37(1): 91
    [12]
    劉嘉璇, 尚新春, 朱維耀. 頁巖氣直井非穩態非線性滲流的數值計算及產能預測. 中國科學: 技術科學, 2015, 45(7):737

    Liu J X, Shang X C, Zhu W Y. Numerical computation for nonlinear unsteady percolation of shale gas and prediction of production. Scientia Sinica Tech, 2015, 45(7): 737
    [13]
    Wu K L, Li X F, Wang C C, et al. A model for gas transport in microfractures of shale and tight gas reservoirs. AIChE J, 2015, 61(6): 2079 doi: 10.1002/aic.14791
    [14]
    朱維耀, 亓倩. 頁巖氣多尺度復雜流動機理與模型研究. 中國科學: 技術科學, 2016, 46(2):111

    Zhu W Y, Qi Q. Study on the multi-scale nonlinear flow mechanism and model of shale gas. Scientia Sinica Tech, 2016, 46(2): 111
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article views (923) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频