<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 6
Jun.  2020
Turn off MathJax
Article Contents
PENG Liang-gui, WANG Deng-gang, LI Jie, XING Jun-fang, GONG Dian-yao. Data-driven adaptive setting algorithm for coiling temperature model parameter[J]. Chinese Journal of Engineering, 2020, 42(6): 778-786. doi: 10.13374/j.issn2095-9389.2019.06.12.002
Citation: PENG Liang-gui, WANG Deng-gang, LI Jie, XING Jun-fang, GONG Dian-yao. Data-driven adaptive setting algorithm for coiling temperature model parameter[J]. Chinese Journal of Engineering, 2020, 42(6): 778-786. doi: 10.13374/j.issn2095-9389.2019.06.12.002

Data-driven adaptive setting algorithm for coiling temperature model parameter

doi: 10.13374/j.issn2095-9389.2019.06.12.002
More Information
  • To improve the coiling temperature control accuracy for change-over strip or the first coil of batch hot-rolling, data mining technology was adopted to infer the water cooling learning coefficient which is used in coiling temperature model preset for actual rolling strip from massive production data. Firstly, cooling feature parameters were recognized and defined respectively as absolute, relative, equal and tactical type. Then, the similar distance of each feature parameter between actual rolling strip and each historical rolled strip was calculated and summed. When the total similar distance of each rolled strip met the requirement, the produced strip was clustered as similar with actual rolling strip. Meanwhile, the weight value of the similar strip was calculated by considering its time effect. Secondly, based on the cooling information of the head and tail ends of each similar rolled strip, three object functions which are respectively composed of temperature predictive error and related penalty items such as a penalty deviated from regression learning coefficient and a penalty departed from the default learning coefficient were created and the corresponding constraints were also given. Gradient descent method was utilized to solve the quadratic programming problem. After three mathematical optimization calculations, a referenced learning coefficient and two parameters reflecting the relationship between the learning coefficient with rolling speed and target coiling temperature were obtained and then used to compute the learning coefficient needed in the cooling schedule calculation according to thread speed and target coiling temperature of the actual rolling strip. Application results show that the presented model’s adaptive parameter setting algorithm, based on the cooling data of 100,000 rolled strips can enhance the pre-setup ability of the coiling temperature model for strip head end. The adaptive setting ability of the learning coefficient will increase with the diversity of the strip cooling data stored in the memory and the number of similar strips retrieved.

     

  • loading
  • [1]
    李維剛, 徐文勝, 馬威, 等. 基于熱連軋實測數據的模型鋼族層別優化. 鋼鐵, 2018, 53(10):54

    Li W G, Xu W S, Ma W, et al. Optimization for steel grade family of model based on measured data during hot continuous rolling. Iron Steel, 2018, 53(10): 54
    [2]
    張殿華, 彭文, 孫杰, 等. 板帶軋制過程中的智能化關鍵技術. 鋼鐵研究學報, 2019, 31(2):174

    Zhang D H, Peng W, Sun J, et al. Key intelligent technologies of steel strip rolling process. J Iron Steel Res, 2019, 31(2): 174
    [3]
    李維剛, 鄧肯, 趙云濤, 等. 基于連續曲面的軋制模型自學習方法. 鋼鐵, 2017, 52(12):61

    Li W G, Deng K, Zhao Y T, et al. Self-learning method for rolling model based on continuous surface. Iron Steel, 2017, 52(12): 61
    [4]
    劉相華, 趙啟林, 黃貞益. 人工智能在軋制領域中的應用進展. 軋鋼, 2017, 34(4):1

    Liu X H, Zhao Q L, Huang Z Y. Prospect of artificial intelligent application in rolling. Steel Roll, 2017, 34(4): 1
    [5]
    Edalatpour S, Saboonchi A, Hassanpour S. Effect of phase transformation latent heat on prediction accuracy of strip laminar cooling. J Mater Process Tech, 2011, 211: 1776 doi: 10.1016/j.jmatprotec.2011.05.027
    [6]
    Hashimoto T, Yoshioka Y, Ohtsuka T. Model predictive control for hot strip mill cooling system //2010 IEEE International Conference on Control Applications. Yokohama, 2010: 646
    [7]
    徐小青, 郝曉東, 傅松林, 等. 基于溫度觀測器的層流冷卻路徑控制. 鋼鐵研究學報, 2017, 29(1):81

    Xu X Q, Hao X D, Fu S L, et al. Cooling route control based on temperature observer for laminar cooling process. J Iron Steel Res, 2017, 29(1): 81
    [8]
    宋勇, 荊豐偉, 殷實, 等. 厚規格熱軋帶鋼高精度卷取溫度控制模型. 工程科學學報, 2015, 37(1):106

    Song Y, Jing F W, Yin S, et al. High-precision coiling temperature control model for heavy gauge strip steel. Chin J Eng, 2015, 37(1): 106
    [9]
    Schlang M, Lang B, Poppe T, et al. Current and future development in neural computation in steel processing. Control Eng Pract, 2001, 9(9): 975 doi: 10.1016/S0967-0661(01)00086-7
    [10]
    韓斌, 彭良貴, 王國棟, 等. 基于神經網絡的熱帶層流基本熱流密度的計算. 鋼鐵, 2004, 39(3):29 doi: 10.3321/j.issn:0449-749X.2004.03.008

    Han B, Peng L G, Wang G D, et al. Calculation of basic heat-flux density for hot strip laminar cooling system using artificial neural networks. Iron Steel, 2004, 39(3): 29 doi: 10.3321/j.issn:0449-749X.2004.03.008
    [11]
    孫鐵軍, 楊衛東, 程艷明, 等. 帶鋼層流冷卻系統多目標優化策略的研究. 控制工程, 2016, 23(1):117

    Sun T J, Yang W D, Cheng Y M, et al. Study on multi-objective optimization strategy of strip steel laminar-cooling system. Control Eng China, 2016, 23(1): 117
    [12]
    Jeong S Y, Lee M, Lee S Y, et al. Improving lookup table control of a hot coil strip process with online retrained RBF network. IEEE Trans Ind Electron, 2000, 47(3): 679 doi: 10.1109/41.847908
    [13]
    范曉明, 張利, 蔡曉輝, 等. 小腦模型連接控制(CMAC)網絡用于熱軋帶鋼卷取溫度控制. 東北大學學報: 自然科學版, 2000, 21(6):662

    Fan X M, Zhang L, Cai X H, et al. Hot strip coiling temperature control based on CMAC network. J Northeast Univ Nat Sci, 2000, 21(6): 662
    [14]
    孫鐵軍, 楊衛東, 程艷明, 等. 用改進遺傳算法優化的帶鋼卷取溫度預報模型. 控制理論與應用, 2015, 32(8):1106 doi: 10.7641/CTA.2015.50041

    Sun T J, Yang W D, Cheng Y M, et al. Improved genetic algorithm for optimizing prediction model of strip coiling temperature. Control Theory Appl, 2015, 32(8): 1106 doi: 10.7641/CTA.2015.50041
    [15]
    Pian J X, Zhu Y L. A hybrid soft sensor for measuring hot-rolled strip temperature in the laminar cooling process. Neurocomputing, 2015, 169: 457 doi: 10.1016/j.neucom.2014.09.089
    [16]
    Sato Y, Izui K, Yamada T, et al. Data mining based on clustering and association rule analysis for knowledge discovery in multi-objective topology optimization. Expert Syst Appl, 2019, 119: 247 doi: 10.1016/j.eswa.2018.10.047
    [17]
    何安瑞, 邵健, 孫文權, 等. 適應智能制造的軋制精準控制關鍵技術. 冶金自動化, 2016, 40(5):1

    He A R, Shao J, Sun W Q, et al. Key precise control technologies of rolling for smart manufacturing. Metall Ind Autom, 2016, 40(5): 1
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views (1723) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频