<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 5
May  2020
Turn off MathJax
Article Contents
ZHAO Chao, HUANG Jin-feng, ZHANG Jin, XIE Guo-liang, LIAN Yong, LI De-chen, MA Min-yu, ZHANG Zun-jun, GAO Wen, ZHANG Cheng. Low-cycle fatigue behavior of 4Cr5MoSiV1 hot-work die steel at 700 ℃[J]. Chinese Journal of Engineering, 2020, 42(5): 602-611. doi: 10.13374/j.issn2095-9389.2019.06.10.004
Citation: ZHAO Chao, HUANG Jin-feng, ZHANG Jin, XIE Guo-liang, LIAN Yong, LI De-chen, MA Min-yu, ZHANG Zun-jun, GAO Wen, ZHANG Cheng. Low-cycle fatigue behavior of 4Cr5MoSiV1 hot-work die steel at 700 ℃[J]. Chinese Journal of Engineering, 2020, 42(5): 602-611. doi: 10.13374/j.issn2095-9389.2019.06.10.004

Low-cycle fatigue behavior of 4Cr5MoSiV1 hot-work die steel at 700 ℃

doi: 10.13374/j.issn2095-9389.2019.06.10.004
More Information
  • Corresponding author: E-mail: ustbhuangjf@163.com
  • Received Date: 2019-06-10
  • Publish Date: 2020-05-01
  • 4Cr5MoSiV1 hot-die steel exhibits excellent thermal fatigue and comprehensive mechanical properties, and it is widely used in hot forging die and hot extrusion die. Under actual service conditions, mold cavity temperature reaches 700 ℃ during mold operation. Mold cavity surface produces tension and compression strain owing to acute heat and cooling-constraints of subsurface layer, thereby resulting in local plastic deformation of mold and low-cycle fatigue. Therefore, low-cycle fatigue behavior of 4Cr5MoSiV1 steel at 700 ℃ is studied to provide reference data for component design and life prediction of 4Cr5MoSiV1 steel. The effect of total strain amplitude on low-cycle fatigue behavior of 4Cr5MoSiV1 steel at 700 °C has not been studied. The influence of total strain amplitude on the low-cycle fatigue behavior of 4Cr5MoSiV1 steel at 700 ℃ was studied using the low-cycle fatigue test with an axial strain amplitude control, including cyclic stress-response behavior, cyclic stress-strain behavior, cyclic hysteresis loop, and strain-fatigue life behavior. Results show that, with the increase of the total strain amplitude from 0.2% to 0.6%, the cyclic stress responses of 4Cr5MoSiV1 steel at 700 ℃ show the characteristics of cyclic hardening and recycling softening, and the maximum stress amplitude increases from 220 MPa to 308 MPa. As the total strain amplitude increases, the low-cycle fatigue life of 4Cr5MoSiV1 steel at 700 ℃ decreases from 6750 cycles to 210 cycles, and its transition life is approximately 1313 cycles. The results of fatigue fracture morphology analysis show that the crack mainly occurs on the surface of the sample during the high-temperature low-cycle fatigue. With the increase in the strain amplitude, the crack source gradually increases, the distance between fatigue stripes widens, and the fracture mode changes from ductile to brittle fracture. The results of TEM analysis show that the cyclic softening may be related to the change of lath structure to cellular structure, dislocation annihilation of matrix, carbide precipitation, and coarsening.

     

  • loading
  • [1]
    Unterweiser P M, Boyer H E, Kubbs J J, et al. Heat Treater's Guide, Standard Practices and Procedures for Steel. 4th Ed. Materials Park: American Society for Metals, 1982
    [2]
    Hawryluk M, Dolny A, Mroziński S. Low cycle fatigue studies of WCLV steel (1.2344) used for forging tools to work at higher temperatures. Arch Civil Mech Eng, 2018, 18(2): 465 doi: 10.1016/j.acme.2017.08.002
    [3]
    Persson A, Hogmark S, Bergstr?m J. Simulation and evaluation of thermal fatigue cracking of hot work tool steels. Int J Fatigue, 2004, 26(10): 1095 doi: 10.1016/j.ijfatigue.2004.03.005
    [4]
    Tsuhii N, Abe G, Fukaura K, et al. Effect of testing atmosphere on low cycle fatigue of hot work tool steel at elevated temperature. Tetsu-to-hagané, 1995, 81(6): 661 doi: 10.2355/tetsutohagane1955.81.6_661
    [5]
    Ma L, Luo Y X, Wang Y Q, et al. Visco-plastic constitutive model for cyclic responses simulation and lifetime prediction of hot-work tool steel H13 at elevated temperature. Steel Res Int, 2017, 88(11): 1700083 doi: 10.1002/srin.201700083
    [6]
    Wang Y Q, Du W Q, Luo Y X. A mean plastic strain fatigue–creep life prediction and reliability analysis of AISI H13 based on energy method. J Mater Res, 2017, 32(22): 4254 doi: 10.1557/jmr.2017.385
    [7]
    Zeng Y, Zuo P P, Wu X C, et al. Phenomenon on strain-induced precipitation and coarsening of carbides in H13 at 700 ℃. J Mater Res, 2016, 31(24): 3841 doi: 10.1557/jmr.2016.454
    [8]
    Zeng Y, Zuo P P, Wu X C, et al. Effects of mechanical strain amplitude on the isothermal fatigue behavior of H13. Int J Miner Metall Mater, 2017, 24(9): 1004 doi: 10.1007/s12613-017-1489-z
    [9]
    Wei W L, Feng Y R, Han L H, et al. Cyclic hardening and dynamic strain aging during low-cycle fatigue of Cr-Mo tempered martensitic steel at elevated temperatures. Mater Sci Eng A, 2018, 734: 20 doi: 10.1016/j.msea.2018.07.084
    [10]
    方欽志, 胡勤偉, 任乃勝. H13鋼的高溫拉伸性能研究. 應用力學學報, 2013, 30(4):598 doi: 10.11776/cjam.30.04.B090

    Fang Q Z, Hu Q W, Ren N S. Study on the high temperature tensile properties of steel alloy H13. Chin J Appl Mech, 2013, 30(4): 598 doi: 10.11776/cjam.30.04.B090
    [11]
    Wang Y L, Song K X, Zhang Y M, et al. Microstructure evolution and fracture mechanism of H13 steel during high temperature tensile deformation. Mater Sci Eng A, 2019, 746: 127 doi: 10.1016/j.msea.2019.01.027
    [12]
    Gao C H, Ren T L, Liu M. Low-cycle fatigue characteristics of Cr18Mn18N0.6 austenitic steel under strain controlled condition at 100 ℃. Int J Fatigue, 2019, 118: 35 doi: 10.1016/j.ijfatigue.2018.08.038
    [13]
    Chen L J, Wang Z G, Yao G, et al. The influence of temperature on low cycle fatigue behavior of nickel base superalloy GH4049. Int J Fatigue, 1999, 21(8): 791 doi: 10.1016/S0142-1123(99)00041-9
    [14]
    Salman S, F?nd?k F, Topuz P. Effects of various austempering temperatures on fatigue properties in ductile iron. Mater Des, 2007, 28(7): 2210 doi: 10.1016/j.matdes.2006.06.017
    [15]
    Samrout H, El Abdi R. Fatigue behaviour of 28CrMoV5-08 steel under thermomechanical loading. Int J Fatigue, 1998, 20(8): 555 doi: 10.1016/S0142-1123(97)00130-8
    [16]
    Kaae J L. High-temperature low-cycle fatigue of Alloy 800H. Int J Fatigue, 2009, 31(2): 332 doi: 10.1016/j.ijfatigue.2008.08.002
    [17]
    Verma P, Santhi Srinivas N C, Singh V. Low cycle fatigue behavior of modified 9Cr-1Mo steel at 300 ℃. Mater Sci Eng A, 2018, 715: 17 doi: 10.1016/j.msea.2017.12.105
    [18]
    左鵬鵬, 吳曉春, 曾艷, 等. 基于應變控制的4Cr5MoSiV1熱作模具鋼熱機械疲勞行為. 工程科學學報, 2018, 40(1):76

    Zuo P P, Wu X C, Zeng Y, et al. Strain-controlled thermal-mechanical fatigue behavior of 4Cr5Mo SiV1 hot work die steel. Chin J Eng, 2018, 40(1): 76
    [19]
    Yang F M, Sun X F, Guan H R, et al. On the low cycle fatigue deformation of K40S cobalt-base superalloy at elevated temperature. Mater Lett, 2003, 57(19): 2823 doi: 10.1016/S0167-577X(02)01382-4
    [20]
    Wu J H, Lin C K. Effect of strain rate on high-temperature low-cycle fatigue of 17-4 PH stainless steels. Mater Sci Eng A, 2005, 390(1-2): 291 doi: 10.1016/j.msea.2004.08.063
    [21]
    Ostergren W J. A damage function and associated failure equations for predicting hold time and frequency effects in elevated temperature, low cycle fatigue. J Test Eval, 1976, 4(5): 327 doi: 10.1520/JTE10520J
    [22]
    Mishnev R, Dudova N, Kaibyshev R. Low cycle fatigue behavior of a 10Cr-2W-Mo-3Co-NbV steel. Int J Fatigue, 2016, 83: 344 doi: 10.1016/j.ijfatigue.2015.11.008
    [23]
    于慧臣, 張仕朝, 李影. 不同溫度下16Cr3NiWMoVNbE結構鋼的低周疲勞行為. 機械工程材料, 2014, 38(2):44

    Yu H C, Zhang S C, Li Y. Low cycle fatigue behaviors of structural steel 16Cr3NiWMoVNbE at different temperatures. Mater Mech Eng, 2014, 38(2): 44
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Article views (3058) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频