Citation: | ZHAO Chao, HUANG Jin-feng, ZHANG Jin, XIE Guo-liang, LIAN Yong, LI De-chen, MA Min-yu, ZHANG Zun-jun, GAO Wen, ZHANG Cheng. Low-cycle fatigue behavior of 4Cr5MoSiV1 hot-work die steel at 700 ℃[J]. Chinese Journal of Engineering, 2020, 42(5): 602-611. doi: 10.13374/j.issn2095-9389.2019.06.10.004 |
[1] |
Unterweiser P M, Boyer H E, Kubbs J J, et al. Heat Treater's Guide, Standard Practices and Procedures for Steel. 4th Ed. Materials Park: American Society for Metals, 1982
|
[2] |
Hawryluk M, Dolny A, Mroziński S. Low cycle fatigue studies of WCLV steel (1.2344) used for forging tools to work at higher temperatures. Arch Civil Mech Eng, 2018, 18(2): 465 doi: 10.1016/j.acme.2017.08.002
|
[3] |
Persson A, Hogmark S, Bergstr?m J. Simulation and evaluation of thermal fatigue cracking of hot work tool steels. Int J Fatigue, 2004, 26(10): 1095 doi: 10.1016/j.ijfatigue.2004.03.005
|
[4] |
Tsuhii N, Abe G, Fukaura K, et al. Effect of testing atmosphere on low cycle fatigue of hot work tool steel at elevated temperature. Tetsu-to-hagané, 1995, 81(6): 661 doi: 10.2355/tetsutohagane1955.81.6_661
|
[5] |
Ma L, Luo Y X, Wang Y Q, et al. Visco-plastic constitutive model for cyclic responses simulation and lifetime prediction of hot-work tool steel H13 at elevated temperature. Steel Res Int, 2017, 88(11): 1700083 doi: 10.1002/srin.201700083
|
[6] |
Wang Y Q, Du W Q, Luo Y X. A mean plastic strain fatigue–creep life prediction and reliability analysis of AISI H13 based on energy method. J Mater Res, 2017, 32(22): 4254 doi: 10.1557/jmr.2017.385
|
[7] |
Zeng Y, Zuo P P, Wu X C, et al. Phenomenon on strain-induced precipitation and coarsening of carbides in H13 at 700 ℃. J Mater Res, 2016, 31(24): 3841 doi: 10.1557/jmr.2016.454
|
[8] |
Zeng Y, Zuo P P, Wu X C, et al. Effects of mechanical strain amplitude on the isothermal fatigue behavior of H13. Int J Miner Metall Mater, 2017, 24(9): 1004 doi: 10.1007/s12613-017-1489-z
|
[9] |
Wei W L, Feng Y R, Han L H, et al. Cyclic hardening and dynamic strain aging during low-cycle fatigue of Cr-Mo tempered martensitic steel at elevated temperatures. Mater Sci Eng A, 2018, 734: 20 doi: 10.1016/j.msea.2018.07.084
|
[10] |
方欽志, 胡勤偉, 任乃勝. H13鋼的高溫拉伸性能研究. 應用力學學報, 2013, 30(4):598 doi: 10.11776/cjam.30.04.B090
Fang Q Z, Hu Q W, Ren N S. Study on the high temperature tensile properties of steel alloy H13. Chin J Appl Mech, 2013, 30(4): 598 doi: 10.11776/cjam.30.04.B090
|
[11] |
Wang Y L, Song K X, Zhang Y M, et al. Microstructure evolution and fracture mechanism of H13 steel during high temperature tensile deformation. Mater Sci Eng A, 2019, 746: 127 doi: 10.1016/j.msea.2019.01.027
|
[12] |
Gao C H, Ren T L, Liu M. Low-cycle fatigue characteristics of Cr18Mn18N0.6 austenitic steel under strain controlled condition at 100 ℃. Int J Fatigue, 2019, 118: 35 doi: 10.1016/j.ijfatigue.2018.08.038
|
[13] |
Chen L J, Wang Z G, Yao G, et al. The influence of temperature on low cycle fatigue behavior of nickel base superalloy GH4049. Int J Fatigue, 1999, 21(8): 791 doi: 10.1016/S0142-1123(99)00041-9
|
[14] |
Salman S, F?nd?k F, Topuz P. Effects of various austempering temperatures on fatigue properties in ductile iron. Mater Des, 2007, 28(7): 2210 doi: 10.1016/j.matdes.2006.06.017
|
[15] |
Samrout H, El Abdi R. Fatigue behaviour of 28CrMoV5-08 steel under thermomechanical loading. Int J Fatigue, 1998, 20(8): 555 doi: 10.1016/S0142-1123(97)00130-8
|
[16] |
Kaae J L. High-temperature low-cycle fatigue of Alloy 800H. Int J Fatigue, 2009, 31(2): 332 doi: 10.1016/j.ijfatigue.2008.08.002
|
[17] |
Verma P, Santhi Srinivas N C, Singh V. Low cycle fatigue behavior of modified 9Cr-1Mo steel at 300 ℃. Mater Sci Eng A, 2018, 715: 17 doi: 10.1016/j.msea.2017.12.105
|
[18] |
左鵬鵬, 吳曉春, 曾艷, 等. 基于應變控制的4Cr5MoSiV1熱作模具鋼熱機械疲勞行為. 工程科學學報, 2018, 40(1):76
Zuo P P, Wu X C, Zeng Y, et al. Strain-controlled thermal-mechanical fatigue behavior of 4Cr5Mo SiV1 hot work die steel. Chin J Eng, 2018, 40(1): 76
|
[19] |
Yang F M, Sun X F, Guan H R, et al. On the low cycle fatigue deformation of K40S cobalt-base superalloy at elevated temperature. Mater Lett, 2003, 57(19): 2823 doi: 10.1016/S0167-577X(02)01382-4
|
[20] |
Wu J H, Lin C K. Effect of strain rate on high-temperature low-cycle fatigue of 17-4 PH stainless steels. Mater Sci Eng A, 2005, 390(1-2): 291 doi: 10.1016/j.msea.2004.08.063
|
[21] |
Ostergren W J. A damage function and associated failure equations for predicting hold time and frequency effects in elevated temperature, low cycle fatigue. J Test Eval, 1976, 4(5): 327 doi: 10.1520/JTE10520J
|
[22] |
Mishnev R, Dudova N, Kaibyshev R. Low cycle fatigue behavior of a 10Cr-2W-Mo-3Co-NbV steel. Int J Fatigue, 2016, 83: 344 doi: 10.1016/j.ijfatigue.2015.11.008
|
[23] |
于慧臣, 張仕朝, 李影. 不同溫度下16Cr3NiWMoVNbE結構鋼的低周疲勞行為. 機械工程材料, 2014, 38(2):44
Yu H C, Zhang S C, Li Y. Low cycle fatigue behaviors of structural steel 16Cr3NiWMoVNbE at different temperatures. Mater Mech Eng, 2014, 38(2): 44
|