<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 6
Jun.  2020
Turn off MathJax
Article Contents
LU Ting-ting, LI Rong-bin, ZHAO Hong-liang, XIE Ming-zhuang, LIU Feng-qin. Numerical simulation of electro?thermal coupling process for spent cathode carbon block from aluminum electrolysis cell[J]. Chinese Journal of Engineering, 2020, 42(6): 731-738. doi: 10.13374/j.issn2095-9389.2019.06.10.002
Citation: LU Ting-ting, LI Rong-bin, ZHAO Hong-liang, XIE Ming-zhuang, LIU Feng-qin. Numerical simulation of electro?thermal coupling process for spent cathode carbon block from aluminum electrolysis cell[J]. Chinese Journal of Engineering, 2020, 42(6): 731-738. doi: 10.13374/j.issn2095-9389.2019.06.10.002

Numerical simulation of electro?thermal coupling process for spent cathode carbon block from aluminum electrolysis cell

doi: 10.13374/j.issn2095-9389.2019.06.10.002
More Information
  • Corresponding author: E-mail: liufq@ustb.edu.cn
  • Received Date: 2019-06-10
  • Publish Date: 2020-06-01
  • Spent cathode carbon block (SCCB) is considered to be a kind of hazardous waste, because it contains a large amount of soluble fluoride salts and toxic cyanides. The life of an aluminum electrolytic cell is generally 5?8 years, and the SCCB would be produced during the overhaul of the cell. Currently, most SCCBs are piled in landfills or stored for disposal in China. The unreasonable disposal of SCCBs will cause serious pollution and damage to the ecological environment, and wastage of valuable carbon material and fluoride salts. The key to the safe disposal and resource utilization of SCCBs is to separate the carbon and fluoride salts deeply. In this study, SCCB was treated by the pyrometallurgical process, and the characteristics of volatilization temperature of fluoride salts were firstly experimentally determined. For a laboratory-scale self-designed high temperature resistance furnace, a three-dimensional model was built and numerical calculation was performed. The heat transfer characteristics, temperature control law and effective volatilization region of fluoride salts were analyzed in detail. The experimental results demonstrate that the effective volatilization temperature of fluoride is higher than 1700 ℃, and the volatilization rate is higher than 93.1%. By simulating the evolution of the temperature field in the furnace under different power supply modes, it is obtained that under the power supply condition of heating at 12 V for 24 h and holding 9 V for 12 h, the maximum temperature in the furnace during the heating phase can reach 2250 ℃, and the theoretical volatilization volume of fluoride salts can reach 98%. After optimization, a step-by-step decreasing mode of power supply can improve the efficiency of treating SCCBs. Moreover, the treating temperature can be maintained for 20 h at 1700 ℃, which is beneficial to the deep separation of carbon material and fluoride salts in SCCB.

     

  • loading
  • [1]
    Birry L, Leclerc S, Poirier S. The LCL&L process: a sustainable solution for the treatment and recycling of spent potlining // Light Metals 2016. Switzerland: Springer Cham, 2016. 467
    [2]
    曹曉舟, 時園園, 趙爽, 等. 鋁電解槽廢舊陰極炭塊中有價組分的回收. 東北大學學報: 自然科學版, 2014, 35(12):1746

    Cao X Z, Shi Y Y, Zhao S, et al. Recovery of valuable components from spent pot-lining of aluminium electrolytic reduction cells. J Northeast Univ Nat Sci, 2014, 35(12): 1746
    [3]
    鮑龍飛, 趙俊學, 唐雯聃, 等. 鋁電解槽廢舊陰極的分選與回收利用. 中國有色冶金, 2014, 43(3):51 doi: 10.3969/j.issn.1672-6103.2014.03.015

    Bao L F, Zhao J X, Tang W D, et al. Separation and recycling use of waste cathode in aluminium electrolysis cells. China Nonferrous Metall, 2014, 43(3): 51 doi: 10.3969/j.issn.1672-6103.2014.03.015
    [4]
    Holywell, G, Breault, R. An overview of useful methods to treat, recover, or recycle spent potlining. JOM, 2013, 65(11): 1441 doi: 10.1007/s11837-013-0769-y
    [5]
    馬建立, 商曉甫, 馬云鵬, 等. 電解鋁工業危險廢物處理技術的發展方向. 化工環保, 2016, 36(1):11 doi: 10.3969/j.issn.1006-1878.2016.01.003

    Ma J L, Shang X F, Ma Y P, et al. Directions for development of hazardous waste treatment technologies in electrolytic aluminum industry. Environ Prot Chem Ind, 2016, 36(1): 11 doi: 10.3969/j.issn.1006-1878.2016.01.003
    [6]
    Hittner H J, Byers L R, Lees Jr. J N, et al. Rotary Kilntreatment of Potliner: US Patent, 5711018. 1998-01-20
    [7]
    Barrillon E, Personnet P, Bontron J. Process for the Thermal Shock Treatment of Spent Pot Linings Obtained from Hall-heroult Electrolytic Cells: US Patent, 5245115. 1993-09-14
    [8]
    Grolman R J, Holywell G C, Kimmerle F M, et al. Recycling of Spent Pot Linings: US Patent, 5740559. 1995-11-28
    [9]
    Sorlie M, Oye H A. Cathodes in Aluminium Electrolysis. 3rd edition. Berlin: Beuth Verlag GmbH, 2010
    [10]
    陳喜平, 李旺興, 周孑民, 等. 鋁電解廢槽內襯的危害性研究. 輕金屬, 2005(12):33 doi: 10.3969/j.issn.1002-1752.2005.12.009

    Chen X P, Li W X, Zhou J M, et al. Studying on the toxicity of spent potline in aluminum electrolysis. Light Met, 2005(12): 33 doi: 10.3969/j.issn.1002-1752.2005.12.009
    [11]
    翟秀靜, 邱竹賢. 鋁電解槽廢舊陰極炭塊中電解質與炭分離的浮選法研究. 有色金屬, 1993, 45(2):38

    Zhai X J, Qiu Z X. Applying flotation to separate electrolyte from spent carbon of aluminum electrolysis. Nonferrous Met, 1993, 45(2): 38
    [12]
    Bell N, Andersen J N, Lam H K H. Process for the Utilization of Waste Materials from Electrolytic Aluminum Reduction Systems: US Patent, 4113832. 1978-12-12
    [13]
    Lisbona D F, Somerfield C, Steel K M. Leaching of spent pot-lining with aluminium nitrate and nitric acid: effect of reaction conditions and thermodynamic modeling of solution speciation. Hydrometallurgy, 2013, 134: 132
    [14]
    Flores I V, Fraiz F, Lopes Junior R A L, et al. Evaluation of spent pot lining (SPL) as an alternative carbonaceous material in ironmaking processes. J Mater Res Technol, 2019, 8(1): 33 doi: 10.1016/j.jmrt.2017.11.004
    [15]
    Renó M L G, Torres F M, da Silva R J, et al. Exergy analyses in cement production applying waste fuel and mineralizer. Energy Convers Manage, 2013, 75: 98 doi: 10.1016/j.enconman.2013.05.043
    [16]
    Ghenai C, Inayat A, Shanableh A, et al. Combustion and emissions analysis of Spent Pot lining (SPL) as alternative fuel in cement industry. Sci Total Environ, 2019, 684: 519 doi: 10.1016/j.scitotenv.2019.05.157
    [17]
    楊家慶. 煤炭超高溫制備石墨工藝及其設備研究[學位論文]. 西安: 西安科技大學, 2015

    Yang J Q. The Research about Process and Equipment of Coal Prepare to Graphite in the Ultra High Temperature[Dissertation]. Xi’an: Xi’an University of Science and Technology, 2015
    [18]
    李勇剛. 高溫電加熱過程模擬與優化的研究[學位論文]. 青島: 中國海洋大學, 2011

    Li Y G. Study on Simulation and Optimization of High-temperature Electric Heating Process[Dissertation]. Qingdao: Ocean University of China, 2011
    [19]
    張彪, 齊宏, 阮立明. 二維多孔熱密封材料的有效導熱系數模擬. 工程熱物理學報, 2012, 33(7):1229

    Zhang B, Qi H, Ruan L M. Two-dimensional simulation for the effective thermal conductivity of heat-sealing porous material. J Eng Thermophys, 2012, 33(7): 1229
    [20]
    顧鸝鋆, 溫治, 豆瑞鋒, 等. 艾奇遜石墨化爐爐溫分布特性的仿真研究. 冶金能源, 2012, 31(5):28 doi: 10.3969/j.issn.1001-1617.2012.05.008

    Gu L J, Wen Z, Dou R F, et al. Acheson graphitization furnace and the simulation of temperature distribution. Energy Metall Ind, 2012, 31(5): 28 doi: 10.3969/j.issn.1001-1617.2012.05.008
    [21]
    許海飛, 劉朝東, 王玉彬, 等. 內熱串接石墨化爐加熱過程熱場數值模擬. 炭素技術, 2009, 28(1):1 doi: 10.3969/j.issn.1001-3741.2009.01.001

    Xu H F, Liu C D, Wang Y B, et al. Numerical simulation of heat field in lengthwise graphitization furnace during heating process. Carbon Tech, 2009, 28(1): 1 doi: 10.3969/j.issn.1001-3741.2009.01.001
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article views (1479) PDF downloads(70) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频