<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 10
Oct.  2019
Turn off MathJax
Article Contents
AN Fu-qiang, HE Dong-lin, PANG Zheng, LI Ping. Preparation of silicon/graphite/carbon composites with fiber carbon and their application in lithium-ion batteries[J]. Chinese Journal of Engineering, 2019, 41(10): 1307-1314. doi: 10.13374/j.issn2095-9389.2019.06.08.001
Citation: AN Fu-qiang, HE Dong-lin, PANG Zheng, LI Ping. Preparation of silicon/graphite/carbon composites with fiber carbon and their application in lithium-ion batteries[J]. Chinese Journal of Engineering, 2019, 41(10): 1307-1314. doi: 10.13374/j.issn2095-9389.2019.06.08.001

Preparation of silicon/graphite/carbon composites with fiber carbon and their application in lithium-ion batteries

doi: 10.13374/j.issn2095-9389.2019.06.08.001
More Information
  • Corresponding author: LI Ping, E-mail: liping@ustb.edu.cn
  • Received Date: 2019-06-08
  • Publish Date: 2019-10-01
  • Lithium-ion batteries have been widely used in various industries because of their high energy density, long life cycle, and green ring. In recent years, with the rapid development of consumer electronics, mobile wearable devices, and especially electric vehicles, the energy density requirements of the lithium-ion battery have progressively increased, promoting the development of lithium-ion batteries of higher specific capacity and longer life cycle. The commonly used graphite negative electrodes have a low theoretical capacity of 372 mA·h·g-1, which does not meet the current requirements. Silicon is a very promising lithium-ion battery anode material because of its high theoretical specific capacity of 4200 mA·h·g-1, low price, and eco-friendliness. However, silicon experiences high volume expansion (~300%) during charging and discharging, leading to severe loss of electrical contact with conductive agents and current collectors along with capacity degradation. Thus, using pitch as a soft carbon raw material and nano-Si and commercial graphite as active materials, a silicon/graphite/carbon composite was successfully synthesized using the high-temperature pyrolysis method, and micron-scale carbon fiber was formed in situ. The silicon/graphite/carbon composite material has many advantages: the void between the graphite sheet provides an effective space for the volume expansion of silicon, the coating of the asphalt pyrolysis carbon material can inhibit the volume effect in the nano-Si and increase its electronic conductivity to a certain extent, and the micro-sized carbon fiber enhances the long-range conductivity and structural stability of the material, thus greatly improving the cycle performance of the negative electrode material. The electrochemical test show that the silicon/graphite/carbon composite anode material delivers a reversible capacity of 650 mA·h·g-1 at 200 mA·g-1 and a capacity retention rate of 92.8% after 500 cycles at a current density of 500 mA·g-1. The capacity decay rate per cycle was only 0.014%, indicating excellent cyclic performance.

     

  • loading
  • [1]
    Etacheri V, Marom R, Elazari R, et al. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci, 2011, 4(9): 3243 doi: 10.1039/c1ee01598b
    [2]
    Shen X H, Tian Z Y, Fan R J, et al. Research progress on silicon/carbon composite anode materials for lithium-ion battery. J Energy Chem, 2018, 27(4): 1067 doi: 10.1016/j.jechem.2017.12.012
    [3]
    Zuo X X, Zhu J, Müller-Buschbaum P, et al. Silicon based lithium-ion battery anodes: a chronicle perspective review. Nano Energy, 2017, 31: 113 doi: 10.1016/j.nanoen.2016.11.013
    [4]
    Liu N A, Huo K F, Mcdowell M T, et al. Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes. Sci Rep, 2013, 3: 1919 doi: 10.1038/srep01919
    [5]
    Liu N, Lu Z D, Zhao J, et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nature Nanotechnol, 2014, 9(3): 187 doi: 10.1038/nnano.2014.6
    [6]
    Chan C K, Patel R N, O'Connell M J, et al. Solution-grown silicon nanowires for lithium-ion battery anodes. ACS Nano, 2010, 4(3): 1443 doi: 10.1021/nn901409q
    [7]
    Shao D, Tang D P, Mai Y J, et al. Nanostructured silicon/porous carbon spherical composite as a high capacity anode for Li-ion batteries. J Mater Chem A, 2013, 1(47): 15068 doi: 10.1039/c3ta13616g
    [8]
    Shim H C, Kim I, Woo C S, et al. Nanospherical solid electrolyte interface layer formation in binder-free carbon nanotube aerogel/Si nanohybrids to provide lithium-ion battery anodes with a long-cycle life and high capacity. Nanoscale, 2017, 9(14): 4713 doi: 10.1039/C7NR00965H
    [9]
    Nguyen C C, Yoon T, Seo D M, et al. Systematic investigation of binders for silicon anodes: interactions of binder with silicon particles and electrolytes and effects of binders on solid electrolyte interphase formation. ACS Appl Mater Interfaces, 2016, 8(19): 12211 doi: 10.1021/acsami.6b03357
    [10]
    Zhao G Y, Zhang L, Meng Y F, et al. High storage performance of core-shell Si@C nanoparticles as lithium ion battery anodematerial. Mater Lett, 2013, 96: 170 doi: 10.1016/j.matlet.2013.01.073
    [11]
    Cakan R D, Titirici M M, Antonietti M, et al. Hydrothermal carbon spheres containing silicon nanoparticles: synthesis and lithium storage performance. Chem Commun, 2008(32): 3759 doi: 10.1039/b805671b
    [12]
    Goodenough J B, Park K S. The Li-ion rechargeable battery: a perspective. J Am Chem Soc, 2013, 135(4): 1167 doi: 10.1021/ja3091438
    [13]
    Jung Y S, Lee K T, Oh S M. Si-carbon core-shell composite anode in lithium secondary batteries. Electrochim Acta, 2007, 52(24): 7061 doi: 10.1016/j.electacta.2007.05.031
    [14]
    Liang J W, Li X N, Zhu Y C, et al. Hydrothermal synthesis of nano-silicon from a silica sol and its use in lithium ion batteries. Nano Res, 2014, 8(5): 1497
    [15]
    Huang X K, Yang J, Mao S, et al. Controllable synthesis of hollow Si anode for long-cycle-life lithium-ion batteries. Adv Mater, 2014, 26(25): 4326 doi: 10.1002/adma.201400578
    [16]
    Zhang L, Rajagopalan R, Guo H P, et al. A green and facile way to prepare granadilla-like silicon-based anode materials for Li-ion batteries. Adv Funct Mater, 2016, 26(3): 440 doi: 10.1002/adfm.201503777
    [17]
    Yang L Y, Li H Z, Liu J, et al. Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries. Sci Rep, 2015, 5: 10908 doi: 10.1038/srep10908
    [18]
    Liu Y J, Tai Z X, Zhou T F, et al. An all-integrated anode via interlinked chemical bonding between double-shelled-yolk-structured silicon and binder for Lithium-ion batteries. Adv Mater, 2017, 29(44): 1703028 doi: 10.1002/adma.201703028
    [19]
    Yang J P, Wang Y X, Chou S L, et al. Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries. Nano Energy, 2015, 18: 133 doi: 10.1016/j.nanoen.2015.09.016
    [20]
    Devarapalli R R, Szunerits S, Coffinier Y, et al. Glucose-derived porous carbon-coated silicon nanowires as efficient electrodes for aqueous micro-supercapacitors. ACS Appl Mater Interfaces, 2016, 8(7): 4298 doi: 10.1021/acsami.5b11240
    [21]
    Peled E, Patolsky F, Golodnitsky D, et al. Tissue-like silicon nanowires-based three-dimensional anodes for high-capacity lithium ion batteries. Nano Lett, 2015, 15(6): 3907 doi: 10.1021/acs.nanolett.5b00744
    [22]
    Prosini P P, Cento C, Alessandrini F, et al. Electrochemical characterization of silicon nanowires as an anode for lithium batteries. Solid State Ionics, 2014, 260: 49 doi: 10.1016/j.ssi.2014.03.004
    [23]
    Ren W F, Zhang Z L, Wang Y H, et al. Preparation of porous silicon/carbon microspheres as high performance anode materials for lithium ion batteries. J Mater Chem A, 2015, 3(11): 5859 doi: 10.1039/C4TA07093C
    [24]
    Tao H C, Fan L Z, Qu X H. Facile synthesis of ordered porous Si@C nanorods as anode materials for Li-ion batteries. Electrochim Acta, 2012, 71: 194 doi: 10.1016/j.electacta.2012.03.139
    [25]
    Wang W, Favors Z, Li C L, et al. Silicon and carbon nanocomposite spheres with enhanced electrochemical performance for full cell lithium ion batteries. Sci Rep, 2017, 7: 44838 doi: 10.1038/srep44838
    [26]
    An W L, Gao B, Mei S X, et al. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nature Commun, 2019, 10(1): 1447 doi: 10.1038/s41467-019-09510-5
    [27]
    Cheng H, Xiao R, Bian H D, et al. Periodic porous silicon thin films with interconnected channels as durable anode materials for lithium ion batteries. Mater Chem Phys, 2014, 144(1-2): 25 doi: 10.1016/j.matchemphys.2013.12.003
    [28]
    Qin Y L, Li F, Bai X B, et al. A novel Si film with Si nanocrystals embedded in amorphous matrix on Cu foil as anode for lithium ion batteries. Mater Lett, 2015, 138: 104 doi: 10.1016/j.matlet.2014.09.101
    [29]
    Li J Y, Li G, Zhang J, et al. Rational design of robust Si/C microspheres for high-tap-density anode materials. ACS Appl Mater Interfaces, 2019, 11(4): 4057 doi: 10.1021/acsami.8b20213
    [30]
    Xu Q, Li J Y, Sun J K, et al. Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes. Adv Energy Mater, 2017, 7(3): 1601481 doi: 10.1002/aenm.201601481
    [31]
    Jia H P, Zheng J M, Song J H, et al. A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries. Nano Energy, 2018, 50: 589 doi: 10.1016/j.nanoen.2018.05.048
    [32]
    Ko M, Chae S, Jeong S, et al. Elastic a-silicon nanoparticle backboned graphene hybrid as a self-compacting anode for high-rate lithium ion batteries. ACS Nano, 2014, 8(8): 8591 doi: 10.1021/nn503294z
    [33]
    Zhou X S, Yin Y X, Wan L J, et al. Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries. Chem Commun, 2012, 48(16): 2198 doi: 10.1039/c2cc17061b
    [34]
    Liu J, Kopold P, van Aken P A, et al. Energy storage materials from nature through nanotechnology: a sustainable route from reed plants to a silicon anode for lithium-ion batteries. Angew Chem Int Ed, 2015, 54(33): 9632 doi: 10.1002/anie.201503150
    [35]
    Eom K, Joshi T, Bordes A, et al. The design of a Li-ion full cell battery using a nano silicon and nano multi-layer graphene composite anode., 2014, 249: 118
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(9)

    Article views (1029) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频