<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 5
May  2020
Turn off MathJax
Article Contents
LI Dong, LI Zheng-yao, YIN Wan-zhong, SUN Chun-bao, KOU Jue, YAO Jin, HAN Hui-li. Effect of particle size on flotation separation of hematite and quartz[J]. Chinese Journal of Engineering, 2020, 42(5): 586-594. doi: 10.13374/j.issn2095-9389.2019.06.06.006
Citation: LI Dong, LI Zheng-yao, YIN Wan-zhong, SUN Chun-bao, KOU Jue, YAO Jin, HAN Hui-li. Effect of particle size on flotation separation of hematite and quartz[J]. Chinese Journal of Engineering, 2020, 42(5): 586-594. doi: 10.13374/j.issn2095-9389.2019.06.06.006

Effect of particle size on flotation separation of hematite and quartz

doi: 10.13374/j.issn2095-9389.2019.06.06.006
More Information
  • Corresponding author: E-mail: zyli0213@ustb.edu.cn
  • Received Date: 2019-06-06
  • Publish Date: 2020-05-01
  • Generally, the flotation performance of mineral particles in a wide size range is usually poor, which can be attributed to the high reagent consumptions and low floatability differences between valuable and gangue minerals. Classification flotation is an effective method for improving the flotation efficiency of particles in a wide size range and is commonly used for coal slime. However, for refractory iron ores, the literature on the relative technology and basic theory of classification flotation, which are necessary and beneficial for the effective utilization of refractory iron ore resources, is scarce. In this study, flotation tests, DLVO theory calculations, and focused beam reflectance measurement (FBRM) particle size analysis were used to analyze the effect of particle size distribution on the flotation separation of hematite and quartz in the sodium oleate system. The flotation results of artificial mixtures show that the flotation performance of coarse or medium hematite–quartz mixture (such as CH&CQ and MH&CQ) with a narrow size range is better than that of the wide size range mixtures. The separation efficiency of CH&CQ and MH&CQ is 85.49% and 84.26%, respectively, which is higher than that of the wide size range mixtures (74.94%). However, the separation efficiency of fine hematite–quartz mixture with a narrow size range (FH&FQ) decreases to 54.98%. The flotation kinetic tests demonstrate that the flotation rate and recovery of hematite are not only related to the particle size of hematite but also influenced by the particle size of quartz. The fine quartz particles could reduce the hematite flotation rate and recovery. The DLVO theory calculations demonstrate that the interaction energies between hematite and quartz are repulsive, indicating that fine quartz particles scarcely cover the hematite surface to depress floatability, which is consistent with the FBRM results. The bubble–particle collision analysis indicates that the collision between hematite and bubbles might be influenced by the “boundary layer” effects of fine quartz particles, resulting in the decreased bubble–particle efficiency of collision and attachment, which may explain the decrease in hematite flotation rate and recovery.

     

  • loading
  • [1]
    韓躍新, 高鵬, 李艷軍, 等. 我國鐵礦資源“劣質能用、優質優用”發展戰略研究. 金屬礦山, 2016, 45(12):2 doi: 10.3969/j.issn.1001-1250.2016.12.002

    Han Y X, Gao P, Li Y J, et al. Development strategies of available use of inferior quality and optimal use of high quality for domestic iron ore resources. Metal Mine, 2016, 45(12): 2 doi: 10.3969/j.issn.1001-1250.2016.12.002
    [2]
    陳雯. 貧細雜難選鐵礦石選礦技術進展. 金屬礦山, 2010, 39(5):55

    Chen W. Technological process in processing low-grade fine-grained complicated refractory iron ores. Metal Mine, 2010, 39(5): 55
    [3]
    Peng Y L, Liang L, Tan J K, et al. Effect of flotation reagent adsorption by different ultra-fine coal particles on coal flotation. Int J Miner Process, 2015, 142: 17 doi: 10.1016/j.minpro.2014.12.005
    [4]
    Ni C, Xie G Y, Jin M G, et al. The difference in flotation kinetics of various size fractions of bituminous coal between rougher and cleaner flotation processes. Powder Technol, 2016, 292: 210 doi: 10.1016/j.powtec.2016.02.004
    [5]
    Li W B, Zhou L B, Han Y X, et al. Effect of carboxymethyl starch on fine-grained hematite recovery by high-intensity magnetic separation: experimental investigation and theoretical analysis. Powder Technol, 2019, 343: 270 doi: 10.1016/j.powtec.2018.11.024
    [6]
    Ni C, Bu X N, Xia W C, et al. Observing slime-coating of fine minerals on the lump coal surface using particle vision and measurement. Powder Technol, 2018, 339: 434 doi: 10.1016/j.powtec.2018.08.034
    [7]
    Miettinen T, Ralston J, Fornasiero D. The limits of fine particle flotation. Miner Eng, 2010, 23(5): 420 doi: 10.1016/j.mineng.2009.12.006
    [8]
    李東, 印萬忠, 姚金, 等. 東鞍山含菱鐵礦赤鐵礦石分級浮選試驗研究. 金屬礦山, 2016, 45(12):51 doi: 10.3969/j.issn.1001-1250.2016.12.012

    Li D, Yin W Z, Yao J, et al. Classification flotation of Donganshan siderite-containing hematite ore. Metal Mine, 2016, 45(12): 51 doi: 10.3969/j.issn.1001-1250.2016.12.012
    [9]
    Thella J S, Mukherjee A K, Srikakulapu N G. Processing of high alumina iron ore slimes using classification and flotation. Powder Technol, 2012, 217: 418 doi: 10.1016/j.powtec.2011.10.058
    [10]
    謝廣元, 吳玲, 歐澤深, 等. 煤泥分級浮選工藝的研究. 中國礦業大學學報, 2005, 34(6):756 doi: 10.3321/j.issn:1000-1964.2005.06.016

    Xie G Y, Wu L, Ou Z S, et al. Research on fine coal classified flotation flowsheet. J China Univ Min Technol, 2005, 34(6): 756 doi: 10.3321/j.issn:1000-1964.2005.06.016
    [11]
    邢耀文, 桂夏輝, 劉炯天, 等. 基于能量適配的分級浮選試驗研究. 中國礦業大學學報, 2015, 44(5):923

    Xing Y W, Gui X H, Liu J T, et al. Experimental study of classified flotation based on energy input and distribution. J China Univ Min Technol, 2015, 44(5): 923
    [12]
    Xie G Y, Wu L, Ou Z S, et al. Research on fine coal classified flotation process and key technology. Procedia Earth Planet Sci, 2009, 1(1): 701 doi: 10.1016/j.proeps.2009.09.110
    [13]
    姚孟齊. 晉寧低品位磷礦分級浮選試驗研究[學位論文]. 昆明: 昆明理工大學, 2018

    Yao M Q. Research on Classification Flotation of Low-Grade Phosphorite in Jinning [Dissertation]. Kunming: Kunming University of Science and Technology, 2018
    [14]
    周偉, 庾朝富, 王濤, 等. 煤泥分級浮選中分級工藝的研究. 選煤技術, 2013(6):34

    Zhou W, Yu C F, Wang T, et al. Research on sizing process of fine coal sized flotation. Coal Preparation Technol, 2013(6): 34
    [15]
    Xing Y W, Xu X H, Gui X H, et al. Effect of kaolinite and montmorillonite on fine coal flotation. Fuel, 2017, 195: 284 doi: 10.1016/j.fuel.2017.01.058
    [16]
    Li D, Yin W Z, Liu Q, et al. Interactions between fine and coarse hematite particles in aqueous suspension and their implications for flotation. Miner Eng, 2017, 114: 74 doi: 10.1016/j.mineng.2017.09.012
    [17]
    Yu Y X, Cheng G, Ma L Q, et al. Effect of agitation on the interaction of coal and kaolinite in flotation. Powder Technol, 2017, 313: 122 doi: 10.1016/j.powtec.2017.03.002
    [18]
    邱冠周, 胡岳華, 王淀佐. 顆粒間的相互作用和細粒浮選. 長沙: 中南工業大學出版社, 1993

    Qiu G Z, Hu Y H, Wang D Z. Interaction of Particles and Flotation Techniques of Fine Particles. Changsha: Central South University of Technology Press, 1993
    [19]
    Yin W Z, Yang X S, Zhou D P, et al. Shear hydrophobic flocculation and flotation of ultrafine Anshan hematite using sodium oleate. Trans Nonferrous Met Soc China, 2011, 21(3): 652 doi: 10.1016/S1003-6326(11)60762-0
    [20]
    Neethling S J, Cilliers J J. The entrainment of gangue into a flotation froth. Int J Miner Process, 2002, 64(2-3): 123 doi: 10.1016/S0301-7516(01)00067-9
    [21]
    Wang L, Peng Y, Runge K, et al. A review of entrainment: Mechanisms, contributing factors and modelling in flotation. Miner Eng, 2015, 70: 77 doi: 10.1016/j.mineng.2014.09.003
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article views (3507) PDF downloads(80) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频