<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 3
Mar.  2020
Turn off MathJax
Article Contents
ZHOU Ke, ZHANG Hao-bo, FU Dong-mei, ZHAO Zhi-yi, ZENG Hui. Design and implementation of multi-feature fusion moving target detection algorithms in a complex environment based on SiamMask[J]. Chinese Journal of Engineering, 2020, 42(3): 381-389. doi: 10.13374/j.issn2095-9389.2019.06.06.005
Citation: ZHOU Ke, ZHANG Hao-bo, FU Dong-mei, ZHAO Zhi-yi, ZENG Hui. Design and implementation of multi-feature fusion moving target detection algorithms in a complex environment based on SiamMask[J]. Chinese Journal of Engineering, 2020, 42(3): 381-389. doi: 10.13374/j.issn2095-9389.2019.06.06.005

Design and implementation of multi-feature fusion moving target detection algorithms in a complex environment based on SiamMask

doi: 10.13374/j.issn2095-9389.2019.06.06.005
More Information
  • Corresponding author: E-mail: cocofay126@126.com
  • Received Date: 2019-06-06
  • Publish Date: 2020-03-01
  • Moving target recognition in a complex environment is recently an important research direction in the field of image recognition. The current research focus is how to track moving objects online in complex scenes to meet the real-time and reliability requirements of image tracking and subsequent processing. With the in-depth application of unmanned factory, intelligent safety supervision and other technologies in the field of manufacturing industry, dynamic recognition technology in the complex environment represented by a visual recognition warning system has become an important research in the field of intelligent industry, and the detection requirements of high reliability and real-time for mobile target detection have been identified. In the industrial level vision recognition warning system described in this paper, the hair area of operators was difficult to be segmented in real time because of its irregular movement. To solve this problem, a space-time predictive moving target tracking algorithm was proposed based on the SiamMask model. This algorithm combined the SiamMask single target tracking algorithm based on the PyTorch deep learning framework with ROI detection and STC spatiotemporal context prediction algorithm. According to the online learning of the spatiotemporal relationship of the target, it predicted the new target location and corrected the algorithm of the SiamMask model to realize the fast recognition of the target in the video sequence. The experimental results show that the proposed algorithm can overcome the influence of environmental interference and target occlusion on the tracking effect, reducing the target tracking error recognition rate to 0.156%. The computational time cost is 30 frames per second, which is 3.2 frames per second greater than the frame rate of the improved SiamMask model and 11.94% greater efficiency than that of the original SiamMask model. The algorithm meets the requirements of accuracy and real-time performance of the visual recognition and early warning system, and has reference significance for the application of the moving target recognition algorithm model in a complex environment.

     

  • loading
  • [1]
    Xing J L, Ai H Z, Lao S H. Multiple human tracking based on multi-view upper-body detection and discriminative learning // 2010 20th International Conference on Pattern Recognition. Istanbul, 2010: 1698
    [2]
    Liu L W, Xing J L, Ai H Z, et al. Hand posture recognition using finger geometric feature // Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012). Tsukuba, 2012: 565
    [3]
    Bertinetto L, Valmadre J, Henriques J F, et al. Fully-convolutional siamese networks for object tracking // European Conference on Computer Vision. Cham: Springer, 2016: 850
    [4]
    Li B, Yan J J, Wu W, et al. High performance visual tracking with siamese region proposal network // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 8971
    [5]
    Wang Q, Zhang L, Bertinetto L, et al. Fast online object tracking and segmentation: a unifying approach // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 1328
    [6]
    李江昀, 趙義凱, 薛卓爾, 等. 深度神經網絡模型壓縮綜述. 工程科學學報, 2019, 41(10): 1229

    Li J Y, Zhao Y K, Xue Z E, et al. A survey of model compression for deep neural networks. Chin J Eng, 2019, 41(10): 1229
    [7]
    沈麗麗, 杭寧. 聯合多種邊緣檢測算子的無參考質量評價算法. 工程科學學報, 2018, 40(8): 996

    Shen L L, Hang N. No-reference image quality assessment using joint multiple edge detection. Chin J Eng, 2018, 40(8): 996
    [8]
    王鑫, 王振民. 一種改進的基于Camshift的粒子濾波實時目標跟蹤算法. 中國圖像圖形學報, 2010, 15(10):1507

    Wang X, Tang Z M. An improved camshaft-based particle filter algorithm for real-time target tracking. J Image Graph, 2010, 15(10): 1507
    [9]
    初紅霞, 謝忠玉, 王科俊. 一種結合顏色紋理直方圖的改進型Camshift目標跟蹤算法. 西安交通大學學報, 2018, 52(3):145

    Chu H X, Xie Z Y, Wang K J. An improved camshift target tracking algorithm based on joint color-texture histogram. J Xian Jiaotong Univ, 2018, 52(3): 145
    [10]
    Yacoob Y, Davis L S. Detection and analysis of hair. IEEE Trans Pattern Anal Mach Intell, 2006, 28(7): 1164 doi: 10.1109/TPAMI.2006.139
    [11]
    傅文林, 胡福喬. 基于mean shift的頭發自動檢測. 微型電腦應用, 2010, 26(9):62

    Fu W L, Hu F Q. Hair detection with mean shift. Microcomput Appl, 2010, 26(9): 62
    [12]
    王志一, 楊大利. 人臉識別中發型遮擋檢測方法研究. 微型機與應用, 2016, 35(2):32 doi: 10.3969/j.issn.1674-7720.2016.02.012

    Wang Z Y, Yang D L. Research on detection method of hair-occlusion in face recognition. Microcomput Its Appl, 2016, 35(2): 32 doi: 10.3969/j.issn.1674-7720.2016.02.012
    [13]
    丁承君, 閆彬. 時空上下文與CamShift相結合的目標跟蹤算法. 傳感器與微系統, 2018, 37(5):108

    Ding C J, Yan B. Target tracking algorithm combines STC with CamShift. Transduc Microsyst Technol, 2018, 37(5): 108
    [14]
    Eriksson D, Bindel D, Shoemaker C. Surrogate Optimization Toolbox Hithub (2019-1-5)[2019-6-5]. https://github.com/dme65/pySOT
    [15]
    Qiang Wang, Li Zhang, Luca Bertinetto, et al. Torr. SiamMask Hithub (2019-5-5)[2019-6-5]. https://github.com/foolwood/SiamMask
    [16]
    Zhang L, Suganthan P N. Robust visual tracking via co-trained kernelized correlation filters. Pattern Recognit, 2017, 69: 82 doi: 10.1016/j.patcog.2017.04.004
    [17]
    Chen C, Wu Z X, Jiang Y G. Emotion in context: Deep semantic feature fusion for video emotion recognition // Proceedings of the 24th ACM International Conference on Multimedia. New York, 2016: 127
    [18]
    黃煜, 黃翔, 李瀧杲, 等. 存在視場丟失的機器視覺精度補償方法, 工程科學學報, 2018, 40(3): 381

    Huang Y, Huang X, Li S G, et al. Compensation method for a robot vision system with an occluded camera field. Chin J Eng, 2018, 40(3): 381
    [19]
    張晶, 王旭, 范洪博. 自適應學習的時空上下文目標跟蹤算法. 計算機工程, 2018, 44(6):294 doi: 10.3969/j.issn.1000-3428.2018.06.050

    Zhang J, Wang X, Fan H B. Spatio temporal context target tracking algorithm of self-adaption learning. Comput Eng, 2018, 44(6): 294 doi: 10.3969/j.issn.1000-3428.2018.06.050
    [20]
    Pont-Tuset J, Perazzi F, Caelles S, et al. The 2017 Davis Challenge on Video Object Segmentation (2017-4-3)[2019-6-5]. https://arxiv.org/abs/1704.00675
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article views (1717) PDF downloads(76) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频