Citation: | YAN Bing-qian, REN Fen-hua, CAI Mei-feng, GUO Qi-feng, WANG Pei-tao. Application of PCA and Bayesian MCMC to discriminate between water sources in seabed gold mines[J]. Chinese Journal of Engineering, 2019, 41(11): 1412-1421. doi: 10.13374/j.issn2095-9389.2019.06.03.004 |
[1] |
李克蓬, 馬鳳山, 張洪訓, 等. 海底金礦礦坑涌水水源判識及演化研究. 工程地質學報, 2017, 25(1):180
Li K P, Ma Fe S, Zhang H X, et al. Recharge source identification and evolution of inflowing water in a seabed gold mine. J Eng Geol, 2017, 25(1): 180
|
[2] |
李長洪, 卜磊, 魏曉明, 等. 深部開采安全機理及災害防控現狀與態勢分析. 工程科學學報, 2017, 39(8):1129
Li C H, Bu L, Wei X M, et al. Current status and future trends of deep mining safety mechanism and disaster prevention and control. Chin J Eng, 2017, 39(8): 1129
|
[3] |
柴金飛, 金愛兵, 高永濤, 等. 基于矩張量反演的礦山突水孕育過程. 工程科學學報, 2015, 37(3):267
Chai J F, Jin A B, Gao Y T, et al. Water inrush inoculation process in mines based on moment tensor inversion. Chin J Eng, 2015, 37(3): 267
|
[4] |
Li L P, Lei T, Li S C, et al. Risk assessment of water inrush in karst tunnels and software development. Arabian J Geosci, 2015, 8(4): 1843 doi: 10.1007/s12517-014-1365-3
|
[5] |
徐星, 田坤云, 鄭吉玉. 基于遺傳BP神經網絡模型的礦井突水水源判別. 工業安全與環保, 2017, 43(11):21 doi: 10.3969/j.issn.1001-425X.2017.11.006
Xu X, Tian K Y, Zheng J Y. Discrimination of mine water inrush source based on genetic BP neural network model. Ind Saf Environ Prot, 2017, 43(11): 21 doi: 10.3969/j.issn.1001-425X.2017.11.006
|
[6] |
陳紅江, 李夕兵, 劉愛華. 礦井突水水源判別的多組逐步Bayes判別方法研究. 巖土力學, 2009, 30(12):3655 doi: 10.3969/j.issn.1000-7598.2009.12.016
Chen H J, Li X B, Liu A H. Studies of water source determination method of mine water inrush based on Bayes’ multi-group stepwise discriminant analysis theory. Rock Soil Mech, 2009, 30(12): 3655 doi: 10.3969/j.issn.1000-7598.2009.12.016
|
[7] |
陳紅江, 李夕兵, 劉愛華, 等. 煤層底板突水量的距離判別分析預測方法. 煤炭學報, 2009, 34(4):487 doi: 10.3321/j.issn:0253-9993.2009.04.011
Chen H J, Li X B, Liu A H, et al. Forecast method of water inrush quantity from coal floor based on distance discriminant analysis theory. J China Coal Soc, 2009, 34(4): 487 doi: 10.3321/j.issn:0253-9993.2009.04.011
|
[8] |
Liu Z X, Dang W G, He X Q. Undersea safety mining of the large gold deposit in Xinli District of Sanshandao Gold Mine. Int J Miner Metall Mater, 2012, 19(7): 574 doi: 10.1007/s12613-012-0598-y
|
[9] |
Li X, Wang B, Liu Y, et al. Stochastic feature mapping for pac-bayes classification. Mach Learning, 2015, 101(1-3): 5 doi: 10.1007/s10994-015-5525-9
|
[10] |
Yan H X, Moradkhani H. Toward more robust extreme flood prediction by Bayesian hierarchical and multimodeling. Nat Hazards, 2016, 81(1): 203 doi: 10.1007/s11069-015-2070-6
|
[11] |
Zhou F, Bai X R. High-resolution sparse subband imaging based on Bayesian learning with hierarchical priors. IEEE Trans Geosci Remote Sensing, 2018, 56(8): 4568 doi: 10.1109/TGRS.2018.2827072
|
[12] |
Ruijters E, Stoelinga M. Fault tree analysis: A survey of the state-of-the-art in modeling, analysis and tools. Comput Sci Rev, 2015(15-16): 29
|
[13] |
Fisher R A. Inverse probability and the use of likelihood. Mathematical Proceed Cambridge Philosophical Soc, 1932, 28(3): 257 doi: 10.1017/S0305004100010094
|
[14] |
Duan G L, Hu W X, Wang J R. Research on the natural image super-resolution reconstruction algorithm based on compressive perception theory and deep learning model. Neurocomputing, 2016, 208: 117 doi: 10.1016/j.neucom.2015.12.125
|
[15] |
Unesi M, Noaparast M, Shafaei S Z, et al. Modeling the effects of ore properties on water recovery in the thickening process. Int J Miner Metall Mater, 2014, 21(9): 851 doi: 10.1007/s12613-014-0981-y
|
[16] |
黃玉雄, 李更豐, 別朝紅, 等. 分布式綜合能源系統可靠性評估. 智慧電力, 2017, 45(7):43 doi: 10.3969/j.issn.1673-7598.2017.07.008
Huang Y X, Li G F, Bie Z H, et al. Reliability evaluation of distributed integrated energy system. Smart Power, 2017, 45(7): 43 doi: 10.3969/j.issn.1673-7598.2017.07.008
|
[17] |
Caroleo B, Palumbo E, Osella M, et al. A knowledge-based multi-criteria decision support system encompassing cascading effects for disaster management. Int J Inf Technol Decis Mak, 2018, 17(5): 1469 doi: 10.1142/S021962201850030X
|
[18] |
趙培, 熊亮. 氯氣管道泄漏源項識別反演問題. 科技導報, 2013, 31(26):48 doi: 10.3981/j.issn.1000-7857.2013.26.007
Zhao P, Xiong L. Inverse problem for the identification of the source term in chlorine pipeline leak. Sci Technol Rev, 2013, 31(26): 48 doi: 10.3981/j.issn.1000-7857.2013.26.007
|
[19] |
陳海洋, 滕彥國, 王金生, 等. 基于Bayesian-MCMC方法的水體污染識別反問題. 湖南大學學報(自然科學版), 2012, 39(6):74
Chen H Y, Teng Y G, Wang J S, et al. Event source identification of water pollution based on Bayesian-MCMC. J Hunan Univ Nat Sci, 2012, 39(6): 74
|
[20] |
Yan X S, Sun J, Hu C Y. Research on contaminant sources identification of uncertainty water demand using genetic algorithm. Cluster Computing, 2017, 20(2): 1007 doi: 10.1007/s10586-017-0787-6
|
[21] |
Kruschke J K, Liddell T M. The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychonomic Bull Rev, 2018, 25(1): 178 doi: 10.3758/s13423-016-1221-4
|
[22] |
魯帆, 嚴登華. 基于廣義極值分布和Metropolis-Hastings抽樣算法的貝葉斯MCMC洪水頻率分析方法. 水利學報, 2013, 44(8):942
Lu F, Yan D H. Bayesian MCMC flood frequency analysis method based on generalized extreme value distribution and Metropolis-Hastings sampling algorithm. J Hydraul Eng, 2013, 44(8): 942
|
[23] |
楊曉彤, 王來斌, 張忠文. Fisher方法在礦井突水水源判別中的應用. 科技信息, 2014(11):97 doi: 10.3969/j.issn.1001-9960.2014.11.070
Yang X T, Wang L B, Zhang Z W. The application of fisher approach to discrimination of mine water-inrush source. Sci Technol Inf, 2014(11): 97 doi: 10.3969/j.issn.1001-9960.2014.11.070
|
[24] |
劉愛華, 劉銀朋, 程力. 三元混合模型在地下礦山涌水水源計算分析中的應用. 中南大學學報(自然科學版), 2014, 45(8):2768
Liu A H, Liu Y P, Cheng L. Application of ternary mixture model in discrimination of underground mine water in rush. J Central S Univ Sci Technol, 2014, 45(8): 2768
|
[25] |
Yang B B, Sui W H, Duan L H. Risk assessment of water inrush in an underground coal mine based on GIS and fuzzy set theory. Mine Water Environ, 2017, 36(4): 617 doi: 10.1007/s10230-017-0457-1
|
[26] |
李國慶, 馬鳳山, 孟召平. 新立礦區海底金屬礦坑與上覆海水的連通性分析. 中南大學學報(自然科學版), 2012, 43(10):3938
Li G Q, Ma F S, Meng Z P. Analysis of connectivity between undersea metal mine and overlying seawater in Xinli mine area. J Central S Univ Sci Technol, 2012, 43(10): 3938
|
[27] |
李國慶, 汪新慶, 尹改梅. 主成分分析法在判定新立礦井海水滲入中的應用. 中國地質災害與防治學報, 2014, 25(3):83
Li G Q, Wang X Q, Yin G M. Application of principal component analysis in identifying the seepage of seawater into Xinli mine pit. Chin J Geol Hazard Control, 2014, 25(3): 83
|
[28] |
Sun W J, Zhou W F, Jiao J. Hydrogeological classification and water inrush accidents in China’s coal mines. Mine Water Environ, 2016, 35(2): 214 doi: 10.1007/s10230-015-0363-3
|