Citation: | YU Lu, JIN Long-zhe, WANG Meng-fei, XU Ming-wei. Recognition of human hypoxic state based on deep learning[J]. Chinese Journal of Engineering, 2019, 41(6): 817-823. doi: 10.13374/j.issn2095-9389.2019.06.014 |
[1] |
Burlet-Vienney D, Chinniah Y, Bahloul A, et al. Occupational safety during interventions in confined spaces. Safety Sci, 2015, 79: 19 doi: 10.1016/j.ssci.2015.05.003
|
[2] |
臧鐵柱, 張禮敬, 張麗, 等. 有限空間作業意外傷亡事故的成因及其對策. 南京工業大學學報(自然科學版), 2005, 27(3): 103 doi: 10.3969/j.issn.1671-7627.2005.03.026
Zang T Z, Zhang L J, Zhang L, et al. Causes and countermeasures of casualty accident induced by unexpected factors in limited job space. J Nanjing Univ Technol Nat Sci Ed, 2015, 27(3): 103 doi: 10.3969/j.issn.1671-7627.2005.03.026
|
[3] |
孫一堅, 沈恒根. 工業通風. 4版. 北京: 中國建筑工業出版社, 2010
Sun Y J, Shen H G. Industrial Ventilation. 4th Ed. Beijing: China Architecture & Building Press, 2010
|
[4] |
周興藩, 楊鳳, 郭玲, 等. 2014-2015年全國有限空間作業中毒與窒息事故分析及預防建議. 環境與職業醫學, 2018, 35(8): 735 https://www.cnki.com.cn/Article/CJFDTOTAL-LDYX201808013.htm
Zhou X F, Yang F, Guo L, et al. Analysis and preventive recommendation of national confined space accidents due to asphyxiation and poisoning from 2014 to 2015. J Eniviron Occup Med, 2018, 35(8): 735 https://www.cnki.com.cn/Article/CJFDTOTAL-LDYX201808013.htm
|
[5] |
Mejías C, Jiménez D, Mu?oz A, et al. Clinical response of 20 people in a mining refuge: study and analysis of functional parameters. Safety Sci, 2014, 63: 204 doi: 10.1016/j.ssci.2013.11.011
|
[6] |
Selman J, Spickett J, Jansz J, et al. An investigation into the rate and mechanism of incident of work-related confined space fatalities. Safety Sci, 2018, 109: 333 doi: 10.1016/j.ssci.2018.06.014
|
[7] |
李國建. 高溫高濕低氧環境下人體熱耐受性研究[學位論文]. 天津: 天津大學, 2008
Li G J. Research on Human Heat Tolerance under Extreme Hot, Humid and Low-oxygen Environment[Dissertaion]. Tianjin: Tianjin University, 2008
|
[8] |
Kamshilin A A, Nippolainen E, Sidorov I S, et al. A new look at the essence of the imaging photoplethysmography. Sci Rep, 2015, 5: 10494 doi: 10.1038/srep10494
|
[9] |
Shin H, Min S D. Feasibility study for the non-invasive blood pressure estimation based on ppg morphology: normotensive subject study. Biomed Eng Online, 2017, 16(1): 10 doi: 10.1186/s12938-016-0302-y
|
[10] |
張強, 涂浩, 左佳鑫. 基于PPG的血氧飽和度實時監測系統研究. 信息化研究, 2017, 43(3): 75 https://www.cnki.com.cn/Article/CJFDTOTAL-DZGS201703014.htm
Zhou Q, Tu H, Zuo J X. Blood oxygen saturation real-time monitoring system research based on PPG. Inform Res, 2017, 43(3): 75 https://www.cnki.com.cn/Article/CJFDTOTAL-DZGS201703014.htm
|
[11] |
Njoum H, Kyriacou P A. Photoplethysmography for the assessment of haemorheology. Sci Rep, 2017, 7(1): 1406 doi: 10.1038/s41598-017-01636-0
|
[12] |
馬俊領, 王成, 李章俊, 等. 基于PPG的心率和呼吸頻率的測量研究. 光學技術, 2011, 37(3): 309 https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS201103013.htm
Ma J L, Wang C, Li Z J, et al. Study of measuring heart rate and respiration rate based on PPG. Opt Tech, 2011, 37(3): 309 https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS201103013.htm
|
[13] |
Tamura T, Maeda Y, Sekine M, et al. Wearable photoplethysmographic sensors-past and present. Electronics, 2014, 3(2): 282 doi: 10.3390/electronics3020282
|
[14] |
Khadse C B, Chaudhari M A, Borghate V B. Electromagnetic compatibility estimator using scaled conjugate gradient back-propagation based artificial neural network. IEEE Trans Ind Inform, 2017, 13(3): 1036 doi: 10.1109/TII.2016.2605623
|
[15] |
Akhtar N, Mian A. Threat of adversarial attacks on deep learning in computer vision: a survey. IEEE Access, 2018, 6: 14410 doi: 10.1109/ACCESS.2018.2807385
|
[16] |
Razzak M I, Naz S, Zaib A. Deep learning for medical image processing: overview, challenges and the future//Classification in Bioapps: Automation of Decision Making. Springer, 2018
|
[17] |
Wang H, Zhao Y, Xu Y M, et al. Cross-language speech attribute detection and phone recognition for Tibetan using deep learning//The 9th International Symposium on Chinese Spoken Language Processing. Singapore, 2014: 474
|
[18] |
Hoffman J, Pathak D, Tzeng E, et al. Large scale visual recognition through adaptation using joint representation and multiple instance learning. J Mach Learn Res, 2016, 17(1): 1 doi: 10.5555/2946645.3007095
|
[19] |
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436 doi: 10.1038/nature14539
|
[20] |
Bronstein M M, Bruna J, LeCun Y, et al. Geometric deep learning: going beyond euclidean data. IEEE Signal Process Mag, 2017, 34(4): 18 doi: 10.1109/MSP.2017.2693418
|
[21] |
Craig A, Tran Y, Wijesuriya N, et al. A controlled investigation into the psychological determinants of fatigue. Biol Psychol, 2006, 72(1): 78 doi: 10.1016/j.biopsycho.2005.07.005
|
[22] |
王青. 基于深層神經網絡的多目標學習和融合的語言增強研究[學位論文]. 合肥: 中國科學技術大學, 2018
Wang Q. Multi Objective Learning and Ensembling for Deep Neura Network Based Speech Enhancement[Dissertation]. Hefei: University of Science and Technology China, 2018
|