<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 6
Jun.  2019
Turn off MathJax
Article Contents
LIN Yi-ling, XING Hui, DONG An-ping, SHE Huan, DU Da-fan, XU Hao, WANG Dong-hong, HUANG Haijun, SHU Da, ZHU Guo-liang, SUN Bao-de. Effects of abutment-implant combinations with different elastic moduli on osteogenic performance[J]. Chinese Journal of Engineering, 2019, 41(6): 781-787. doi: 10.13374/j.issn2095-9389.2019.06.010
Citation: LIN Yi-ling, XING Hui, DONG An-ping, SHE Huan, DU Da-fan, XU Hao, WANG Dong-hong, HUANG Haijun, SHU Da, ZHU Guo-liang, SUN Bao-de. Effects of abutment-implant combinations with different elastic moduli on osteogenic performance[J]. Chinese Journal of Engineering, 2019, 41(6): 781-787. doi: 10.13374/j.issn2095-9389.2019.06.010

Effects of abutment-implant combinations with different elastic moduli on osteogenic performance

doi: 10.13374/j.issn2095-9389.2019.06.010
  • Received Date: 2018-06-04
  • Publish Date: 2019-06-01
  • Many factors affect the success of dental implant surgery, such as surgical trauma, excessive chewing pressure, material performance mismatch, and improper abutment-implant connection. Among these factors, stress shielding caused by the mismatch of elastic modulus of the material is a major problem affecting the biomechanical compatibility of the implant. Also, the elastic modulus of the dental implant directly affects its binding to the surrounding support bone and stress distribution. Presently, most of the abutmentimplant systems on the market use the same material, with TC4 being popular because of its good biocompatibility. However, the elastic modulus of titanium implants is quite different from that of surrounding bone tissue; this difference can cause stress shielding. Additionally, stress concentration may cause implant surgery to fail. The abutment-implant with materials of different elastic modulus directly affect the stability and stress distribution of the bone tissue around the implant; thus, understanding the stress distribution under loading will help to establish a better elastic modulus combination of the dental implant system. In this paper, finite element analysis software was used to calculate the stress distribution of various abutments-implants under different loading conditions. Compared to other experimental abutment-implant systems, the simulation results show that Ti6Al4V abutment-(poly-ether-ether-ketone) (TC4-PEEK) can effectively reduce stress concentration, resulting in uniform stress distribution of surrounding bone tissue whose maximum stress value is 40-60 MPa. The stress level of PEEK implants in different abutment-implant systems is smaller under axial loading condition, whereas the stress level of surrounding bone tissue is larger. In the oblique direction of 45° loading condition, compared to two other abutment-implant systems, the stress level of the TC4-PEEK is lower, and the maximum stress value of the cortical and the cancellous bones in the surrounding bone tissue is 55 and 5 MPa, respectively, and the stress level is the smallest; such conditions contribute to the increase of bone deposition and bone formation, effectively improving the interface stability of the implant.

     

  • loading
  • [1]
    Oh T J, Yoon J, Misch C E, et al. The causes of early implant bone loss: myth or science? J Periodontol, 2002, 73(3): 322 doi: 10.1902/jop.2002.73.3.322
    [2]
    林野. 當代牙種植體設計進步與臨床意義. 華西口腔醫學雜志, 2017, 35(1): 18 https://www.cnki.com.cn/Article/CJFDTOTAL-HXKQ201701005.htm

    Lin Y. Current dental implant design and its clinical importance. West China J Stomatol, 2017, 35(1): 18 https://www.cnki.com.cn/Article/CJFDTOTAL-HXKQ201701005.htm
    [3]
    Guan H L, Van Staden R C, Loo Y C, et al. Evaluation of multiple implant bone parameters on stress characteristics in the mandible under traumatic loading conditions. Int J Oral Maxillofac Impl, 2010, 25(3): 461 http://www.ncbi.nlm.nih.gov/pubmed/20556244
    [4]
    Pérez-Pevida E, Brizuela-Velasco A, Chávarri-Prado D, et al. Biomechanical consequences of the elastic properties of dental implant alloys on the supporting bone: finite element analysis. BioMed Res Int, 2016, 2016: 1850401 http://downloads.hindawi.com/journals/bmri/aip/1850401.pdf
    [5]
    Lin C L, Chang S H, Wang J C. Finite element analysis of biomechanical interactions of a tooth-implant splinting system for various bone qualities. Chang Gung Med J, 2006, 29(2): 143 http://europepmc.org/abstract/med/16767962
    [6]
    Schwitalla A D, Abou-Emara M, Spintig T, et al. Finite element analysis of the biomechanical effects of PEEK dental implants on the peri-implant bone. J Biomech, 2015, 48(1): 1 doi: 10.1016/j.jbiomech.2014.11.017
    [7]
    Lacefield W R. Material characteristics of uncoated/ceramic-coated implant materials. Adv Dent Res, 1999, 13(1): 21 doi: 10.1177/08959374990130011001
    [8]
    Bodic F, Amouriq Y, Gayet-Delacroix M, et al. Relationships between bone mass and micro-architecture at the mandible and iliac bone in edentulous subjects: a dual X-ray absorptiometry, computerised tomography and microcomputed tomography study. Gerodontology, 2012, 29(2): e585 doi: 10.1111/j.1741-2358.2011.00527.x
    [9]
    Jaffee R I. The physical metallurgy of titanium alloys. Prog Met Phys, 1958, 7: 65 doi: 10.1016/0502-8205(58)90004-2
    [10]
    Macedo J P, Pereira J, Faria J, et al. Finite element analysis of stress extent at peri-implant bone surrounding external hexagon or Morse taper implants. J Mech Behav Biomed Mater, 2017, 71: 441 doi: 10.1016/j.jmbbm.2017.03.011
    [11]
    Cook S D, Rust-Dawicki A M. Preliminary evaluation of titanium-coated PEEK dental implants. J Oral Implantol, 1995, 21(3): 176 http://europepmc.org/abstract/med/8699511
    [12]
    Corvelli A A, Biermann P J, Roberts J C. Design, analysis, and fabrication of a composite segmental bone replacement implant. J Adv Mater, 1997, 28(3): 2 http://www.researchgate.net/publication/288531057_Design_analysis_and_fabrication_of_a_composite_segmental_bone_replacement_implant
    [13]
    Kurtz S M, Devine J N. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials, 2007, 28(32): 4845 doi: 10.1016/j.biomaterials.2007.07.013
    [14]
    Han C M, Lee E J, Kim H E, et al. The electron beam deposition of titanium on polyetheretherketone (PEEK) and the resulting enhanced biological properties. Biomaterials, 2010, 31(13): 3465 doi: 10.1016/j.biomaterials.2009.12.030
    [15]
    Strecha J, Jurkovic R, Siebert T, et al. Fixed bicortical screw and blade implants as a non-standard solution to an edentulous (toothless) mandible. Int J Oral Sci, 2010, 2: 105 doi: 10.4248/IJOS10030
    [16]
    Nissan J, Ghelfan O, Gross O, et al. The effect of crown/implant ratio and crown height space on stress distribution in unsplinted implant supporting restorations. J Oral Maxillofac Surg, 2011, 69(7): 1934 doi: 10.1016/j.joms.2011.01.036
    [17]
    王美青, 何三綱. 口腔解剖生理學. 6版. 北京: 人民衛生出版社, 2012

    Wang M Q, He S G. Oral Anatomy and Physiology. 6th Ed. Beijing: People's Medical Publishing House, 2012
    [18]
    Frost H M. A 2003 update of bone physiology and Wolff's law for clinicians. Angle Orthodontist, 2004, 74(1): 3 http://europepmc.org/abstract/med/15038485
    [19]
    Schwitalla A D, Spintig T, Kallage I, et al. Pressure behavior of different PEEK materials for dental implants. J Mech Behav Biomed Mater, 2016, 54: 295 doi: 10.1016/j.jmbbm.2015.10.003
    [20]
    Schwitalla A D, Spintig T, Kallage I, et al. Flexural behavior of PEEK materials for dental application. Dent Mater, 2015, 31(11): 1377 doi: 10.1016/j.dental.2015.08.151
    [21]
    Sampaio M, Buciumaeanu M, Henriques B, et al. Comparison between PEEK and Ti6Al4V concerning micro-scale abrasion wear on dental application. J Mech Behav Biomed Mater, 2016, 60: 212 doi: 10.1016/j.jmbbm.2015.12.038
    [22]
    Watari F, Yokoyama A, Omori M, et al. Biocompatibility of materials and development to functionally graded implant for biomedical application. Compos Sci Technol, 2004, 64(6): 893 doi: 10.1016/j.compscitech.2003.09.005
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(7)  / Tables(5)

    Article views (1144) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频