<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 6
Jun.  2019
Turn off MathJax
Article Contents
GU Chao, ZHAO Li-hua, GAN Peng. Revolution and control of Fe-Al-Ti-O complex oxide inclusions in ultralow-carbon steel during refining process[J]. Chinese Journal of Engineering, 2019, 41(6): 757-762. doi: 10.13374/j.issn2095-9389.2019.06.007
Citation: GU Chao, ZHAO Li-hua, GAN Peng. Revolution and control of Fe-Al-Ti-O complex oxide inclusions in ultralow-carbon steel during refining process[J]. Chinese Journal of Engineering, 2019, 41(6): 757-762. doi: 10.13374/j.issn2095-9389.2019.06.007

Revolution and control of Fe-Al-Ti-O complex oxide inclusions in ultralow-carbon steel during refining process

doi: 10.13374/j.issn2095-9389.2019.06.007
More Information
  • Corresponding author: ZHAO Li-hua, E-mail: 15210951549@sina.cn
  • Received Date: 2018-12-20
  • Publish Date: 2019-06-01
  • Ultralow-carbon steel is an important material for automobile production. Titanium is usually added in this steel grade to form a precipitant and improve the deep drawing property of the steel. However, due to the deoxidation capacity of Ti, Ti addition will directly generate Ti-bearing oxide inclusions instead of the precipitant. To reduce the amount of Ti-bearing oxide inclusions, samples were collected during the RH refining based on the basic oxygen furnace-Ruhrstahl-Heraeus reactor-continuous casting (BOF-RH-CC) ultralow-carbon steel production process, and the oxygen content and inclusion characterization after Al addition and Ti addition were analyzed. The thermodynamics calculation software FactSage was adopted to calculate the Fe-Al-Ti-O inclusion stability phase diagram. The results show that the Al2O3 inclusion usually acts as the nucleation point of the Ti-bearing oxide inclusion, which wraps the Al2O3 inclusion to form the Al-Ti-O complex inclusion. To avoid the generation of the Ti-bearing oxide inclusions, the mass fraction of dissolved Al in the molten steel should be greater than 0.01% when the Ti mass fraction is 0.1%. Furthermore, the generation and growth behavior of the Ti-bearing oxide inclusion were also studied. Based on the calculation of the growth rate and the comparison of the adhesion work of the Al2O3 inclusion and the Ti2O3 inclusion, it is concluded that the growth rate of Ti2O3 inclusion is greater than that of Al2O3 inclusion, and it is more difficult for Ti2O3 inclusions to collide with each other and to be removed at 1600℃. Therefore, the generation of Ti-bearing oxide inclusions should be strictly controlled to improve the removal rate of oxide inclusions in ultralow-carbon steels.

     

  • loading
  • [1]
    Wang R, Bao Y P, Li Y H, et al. Effect of slag composition on steel cleanliness in interstitial-free steel. J Iron Steel Res Int, 2017, 24(6): 579 doi: 10.1016/S1006-706X(17)30088-2
    [2]
    Deng X X, Ji C X, Guan S K, et al. Inclusion behaviour in aluminium-killed steel during continuous casting. Ironmaking Steelmaking, 2018: 1 doi: 10.1080/03019233.2018.1428420
    [3]
    Yu H X, Ji C X, Chen B, et al. Characteristics and evolution of inclusion induced surface defects of cold rolled IF sheet. J Iron Steel Res Int, 2015, 22(Suppl1): 17
    [4]
    趙子蘇, 毛衛民, 余永寧, 等. 鈦對高強IF鋼第二相粒子析出規律和力學性能的影響. 鋼鐵, 2000, 35(9): 47 doi: 10.3321/j.issn:0449-749X.2000.09.014

    Zhao Z S, Mao W M, Yu Y N, et al. Effect of Ti on precipitation of second phase particals and mechanical properties of high strength IF steel. Iron Steel, 2000, 35(9): 47 doi: 10.3321/j.issn:0449-749X.2000.09.014
    [5]
    Wang M, Bao Y P, Cui H, et al. The composition and morphology evolution of oxide inclusions in Ti-bearing ultra low-carbon steel melt refined in the RH process. ISIJ Int, 2010, 50(11): 1606 doi: 10.2355/isijinternational.50.1606
    [6]
    隋亞飛, 孫國棟, 趙艷, 等. IF鋼中含Ti夾雜物的衍變規律. 北京科技大學學報, 2014, 36(9): 1174 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201409007.htm

    Sui Y F, Sun G D, Zhao Y, et al. Evolution of titaniferous inclusions in IF steelmaking. J Univ Sci Technol Beijing, 2014, 36(9): 1174 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201409007.htm
    [7]
    Qin Y M, Wang X H, Huang F X, et al. Influence of reoxidation by slag and air on inclusions in IF steel. Metall Res Technol, 2015, 112(4): 405 doi: 10.1051/metal/2015025
    [8]
    Tsunekawa H, Yamashita T, Aoyama T, et al. Mechanism of formation of streak-shaped defects on ultra-low carbon IF steel for automobile outer panels after press forming and influence of slab reheating temperature before hot rolling and Sb-addition on defects. Tetsu-to-Hagane, 2016, 102(4): 202 doi: 10.2355/tetsutohagane.TETSU-2015-061
    [9]
    Gutiérrez E, Garcia-Hernandez S, de Jesús Barreto J. Mathematical analysis of the dynamic effects on the deposition of alumina inclusions inside the upper tundish nozzle. ISIJ Int, 2016, 56(8): 1394 doi: 10.2355/isijinternational.ISIJINT-2016-076
    [10]
    Guo J L, Bao Y P, Wang M. Cleanliness of Ti-bearing Al-killed ultra-low-carbon steel during different heating processes. Int J Miner Metall Mater, 2017, 24(12): 1370 doi: 10.1007/s12613-017-1529-8
    [11]
    Chase Jr M W, Curnutt J L, McDonald R A, et al. JANAF thermochemical tables, 1978 supplement. J Phys Chem Ref Data, 1978, 7(3): 793 doi: 10.1063/1.555580
    [12]
    Kubaschewski O, Dench W A. The free-energy diagram of the system titanium-oxygen. J Inst Met, 1953: 82 http://ci.nii.ac.jp/naid/10009581664
    [13]
    Nakajima K. Estimation of interfacial tensions between phases in the molten iron-slag-inclusion (alumina) system. Tetsu-toHagane, 1994, 80(5): 383 doi: 10.2355/tetsutohagane1955.80.5_383
    [14]
    Zhao L Y, Sahajwalla V. Interfacial phenomena during wetting of graphite/alumina mixtures by liquid iron. ISIJ Int, 2003, 43(1): 1 doi: 10.2355/isijinternational.43.1
    [15]
    Yang G W, Wang X H, Huang F X, et al. Transient Inclusion Evolution during RH Degassing. Steel Res Int, 2014, 85(1): 26 doi: 10.1002/srin.201300030
    [16]
    Xuan C J, Shibata H, Sukenaga S, et al. Wettability of Al2O3, MgO and Ti2O3 by liquid iron and steel. ISIJ Int, 2015, 55(9): 1882 doi: 10.2355/isijinternational.ISIJINT-2014-820
    [17]
    Yang G W, Wang X H, Huang F X, et al. Transient inclusion evolution during RH degassing. Steel Res Int, 2014, 85(1): 26 doi: 10.1002/srin.201300030
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views (1025) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频