Citation: | WANG Zhen, SONG Xiao-fei, CHEN Tong-yun. A review of bone cutting in surgery[J]. Chinese Journal of Engineering, 2019, 41(6): 709-718. doi: 10.13374/j.issn2095-9389.2019.06.002 |
[1] |
Marco M, Rodríguez-Millán M, Santiuste C, et al. A review on recent advances in numerical modelling of bone cutting. J Mech Behav Biomed Mater, 2015, 44: 179 doi: 10.1016/j.jmbbm.2014.12.006
|
[2] |
Takabi B, Tai B L. A review of cutting mechanics and modeling techniques for biological materials. Med Eng Phys, 2017, 45: 1 doi: 10.1016/j.medengphy.2017.04.004
|
[3] |
Birkenfeld F, Erika Becker M, Harder S, et al. Increased intraosseous temperature caused by ultrasonic devices during bone surgery and the influences of working pressure and cooling irrigation. Int J Oral Max Impl, 2012, 27(6): 1382
|
[4] |
Manerrnann W J, Sampathkumar P, Thompson R L. Sternal wound infections. Best Pract Res Clin Anaesthesiol, 2008, 22(3): 423 doi: 10.1016/j.bpa.2008.04.003
|
[5] |
Wiggins K L, Malkin S. Orthogonal machining of bone. J Biomech Eng, 1978, 100(3): 122 doi: 10.1115/1.3426202
|
[6] |
Jacobs C H, Pope M H, Berry J T, et al. A study of the bone machining process-orthogonal cutting. J Biomech, 1974, 7(2): 131 doi: 10.1016/0021-9290(74)90051-7
|
[7] |
Krause W R. Orthogonal bone cutting: saw design and operating characteristics. J Biomech Eng, 1987, 109(3): 263 doi: 10.1115/1.3138679
|
[8] |
Sui J B, Sugita N, Ishii K, et al. Force analysis of orthogonal cutting of bovine cortical bone. Mach Sci Technol, 2013, 17(4): 637 doi: 10.1080/10910344.2013.837355
|
[9] |
Alam K, Mitrofanov A V, Silberschmidt V V. Finite element analysis of forces of plane cutting of cortical bone. Comput Mater Sci, 2009, 46(3): 738 doi: 10.1016/j.commatsci.2009.04.035
|
[10] |
Alam K, Mitrofanov A V, Silberschmidt V V. Thermal analysis of orthogonal cutting of cortical bone using finite element simulations. Int J Exp Comput Biomech, 2010, 1(3): 236 doi: 10.1504/IJECB.2010.035259
|
[11] |
Childs T H C, Arola D. Machining of cortical bone: Simulations of chip formation mechanics using metal machining models. Mach Sci Technol, 2011, 15(2): 206 doi: 10.1080/10910344.2011.580699
|
[12] |
Santiuste C, Rodríguez-Millán M, Giner E, et al. The influence of anisotropy in numerical modeling of orthogonal cutting of cortical bone. Compos Struct, 2014, 116: 423 doi: 10.1016/j.compstruct.2014.05.031
|
[13] |
Li S, Zahedi A, Silberschmidt V, et al. Penetration of cutting tool into cortical bone: experimental and numerical investigation of anisotropic mechanical behaviour. J Biomech, 2014, 47: 1117 doi: 10.1016/j.jbiomech.2013.12.019
|
[14] |
Feldmann A, Ganser P, Nolte L, et al. Orthogonal cutting of cortical bone: Temperature elevation and fracture toughness. Int J Mach Tools Manuf, 2017, 118-119: 1 doi: 10.1016/j.ijmachtools.2017.03.009
|
[15] |
殷杰. 骨骼微切削過程的有限元仿真與實驗研究[學位論文]. 哈爾濱: 哈爾濱工業大學, 2016
Yin J. Study on Simulation and Experiment of Micro Cutting of Bone[Dissertation]. Harbin: Harbin Institute of Technology, 2016
|
[16] |
Liao Z R, Axinte D A. On chip formation mechanism in orthogonal cutting of bone. Int J Mach Tools Manuf, 2016, 102: 41 doi: 10.1016/j.ijmachtools.2015.12.004
|
[17] |
廖志榮. 骨材料切削加工及一種新型刀具研究[學位論文]. 哈爾濱: 哈爾濱工業大學, 2017
Liao Z R. Research on Bone Cutting and A Novel Tool Development[Dissertation]. Harbin: Harbin Institute of Technology, 2017
|
[18] |
崔洪胤, 胡亞輝, 王超. 刀具微織構形貌對骨切削溫度的預報模型研究. 機床與液壓, 2015, 43(23): 31 doi: 10.3969/j.issn.1001-3881.2015.23.008
Cui H Y, Hu Y H, Wang C. Study on the prediction model of cutting temperature on cortical bone by micro-texture tool. Mach Tool Hydraul, 2015, 43(23): 31 doi: 10.3969/j.issn.1001-3881.2015.23.008
|
[19] |
何玲. 基于正交各向異性分析的皮質骨鉆削的仿真與實驗研究[學位論文]. 天津: 天津理工大學, 2016
He L. Finite Element Analysis and Experimental Research of Cortical Bone Drilling Performance Based on Orthotropic Analysis[Dissertation]. Tianjin: Tianjin University of Technology, 2016
|
[20] |
Augustin G, Davila S, Mihoci K, et al. Thermal osteonecrosis and bone drilling parameters revisited. Arch Orthop Trauma Surg, 2008, 128(1): 71 http://www.ncbi.nlm.nih.gov/pubmed/17762937
|
[21] |
Karaca F, Aksakal B, Kom M. Influence of orthopaedic drilling parameters on temperature and histopathology of bovine tibia: an in vitro study. Med Eng Phys, 2011, 33(10): 1221 doi: 10.1016/j.medengphy.2011.05.013
|
[22] |
Sezek S, Aksakal B, Karaca F. Influence of drill parameters on bone temperature and necrosis: a FEM modelling and in vitro experiments. Comput Mater Sci, 2012, 60: 13 doi: 10.1016/j.commatsci.2012.03.012
|
[23] |
Lee J E, Rabin Y, Ozdoganlar O B. A new thermal model for bone drilling with applications to orthopaedic surgery. Med Eng Phys, 2011, 33(10): 1234 doi: 10.1016/j.medengphy.2011.05.014
|
[24] |
Pandey R K, Panda S S. Drilling of bone: a comprehensive review. J Clin Orthop Trauma, 2013, 4(1): 15 doi: 10.1016/j.jcot.2013.01.002
|
[25] |
Augustin G, Zigman T, Davila S, et al. Cortical bone drilling and thermal osteonecrosis. Clin Biomech, 2012, 27(4): 313 doi: 10.1016/j.clinbiomech.2011.10.010
|
[26] |
Hillery M T, Shuaib I. Temperature effects in drilling of human and bovine bone. J Mater Process Technol, 1999, 92-93: 302 doi: 10.1016/S0924-0136(99)00155-7
|
[27] |
Karmani S, Lam F. The design and function of surgical drills and K-wires. Curr Orthop, 2004, 18(6): 484 doi: 10.1016/j.cuor.2004.12.011
|
[28] |
Bertollo N, Milne H R M, Ellis L P, et al. A comparison of the thermal properties of 2-and 3-fluted drills and the effects on bone cell viability and screw pull-out strength in an ovine model. Clin Biomech, 2010, 25(6): 613 doi: 10.1016/j.clinbiomech.2010.02.007
|
[29] |
Lee J E, Ozdoganlar B, Rabin Y. An experimental investigation on thermal exposure during bone drilling. Med Eng Phys, 2012, 34(10): 1510 doi: 10.1016/j.medengphy.2012.03.002
|
[30] |
Udiljak T, Ciglar D, Skoric S. Investigation into bone drilling and thermal bone necrosis. Adv Prod Eng Manage, 2007, 2(3): 103 http://www.researchgate.net/publication/281153908_Investigation_into_bone_drilling_and_thermal_bone_necrosis
|
[31] |
Karmani S. The thermal properties of bone and the effects of surgical intervention. Curr Orthop, 2006, 20(1): 52 doi: 10.1016/j.cuor.2005.09.011
|
[32] |
Lughmani W A, Bouazza-Marouf K, Ashcroft I. Finite element modeling and experimentation of bone drilling forces. J Phys Conf Ser, 2013, 451: 012034 doi: 10.1088/1742-6596/451/1/012034
|
[33] |
Tu Y K, Chen L W, Ciou J S, et al. Finite element simulations of bone temperature rise during bone drilling based on a bone analog. J Med Biol Eng, 2013, 33(3): 269 doi: 10.5405/jmbe.1366
|
[34] |
Alam K, Khan M, Silberschmidt V V. 3D finite-element modelling of drilling cortical bone: temperature analysis. J Med Biol Eng, 2014, 34(6): 618 http://www.researchgate.net/publication/259669939_3D_Finite-Element_Modelling_of_Drilling_Cortical_Bone_Temperature_Analysis
|
[35] |
Xu L L, Wang C Y, Jiang M, et al. Drilling force and temperature of bone under dry and physiological drilling conditions. Chin J Mech Eng, 2014, 27(6): 1240 doi: 10.3901/CJME.2014.0912.151
|
[36] |
Li X S, Zhu W, Wang J Q, et al. Optimization of bone drilling process based on finite element analysis. Appl Therm Eng, 2016, 108: 211 doi: 10.1016/j.applthermaleng.2016.07.125
|
[37] |
Sui J B, Sugita N, Ishii K, et al. Mechanistic modeling of bonedrilling process with experimental validation. J Mater Process Technol, 2014, 214(4): 1018 doi: 10.1016/j.jmatprotec.2013.11.001
|
[38] |
Sui J B, Sugita N, Mitsuishi M. Thermal modeling of temperature rise for bone drilling with experimental validation. J Manuf Sci Eng, 2015, 137(6): 061008 doi: 10.1115/1.4030880
|
[39] |
Tai B L, Palmisano A C, Belmont B, et al. Numerical evaluation of sequential bone drilling strategies based on thermal damage. Med Eng Phys, 2015, 37(9): 855 doi: 10.1016/j.medengphy.2015.06.002
|
[40] |
Tai B L, Zhang L H, Wang A, et al. Neurosurgical bone grinding temperature monitoring. Procedia CIRP, 2013, 5: 226 doi: 10.1016/j.procir.2013.01.045
|
[41] |
Zhang L H, Tai B L, Wang G J, et al. Thermal model to investigate the temperature in bone grinding for skull base neurosurgery. Med Eng Phys, 2013, 35(10): 1391 doi: 10.1016/j.medengphy.2013.03.023
|
[42] |
朱錚. 骨組織磨削特性實驗研究[學位論文]. 廈門: 華僑大學, 2014
Zhu Z. Experimental Study on Bone Tissue Grinding Characteristics[Dissertation]. Xiamen: Huaqiao University, 2014
|
[43] |
Shin H C, Yoon Y S. Bone temperature estimation during orthopaedic round bur milling operations. J Biomech, 2006, 39(1): 33 doi: 10.1016/j.jbiomech.2004.11.004
|
[44] |
Sugita N, Osa T, Mitsuishi M. Analysis and estimation of cutting-temperature distribution during end milling in relation to orthopedic surgery. Med Eng Phys, 2009, 31(1): 101 doi: 10.1016/j.medengphy.2008.05.001
|
[45] |
Sugita N, Ishii K, Sui J B, et al. Multi-grooved cutting tool to reduce cutting force and temperature during bone machining. CIRP Ann, 2014, 63(1): 101 doi: 10.1016/j.cirp.2014.03.069
|
[46] |
Liao Z R, Axinte D A, Gao D. A novel cutting tool design to avoid surface damage in bone machining. Int J Mach Tools Manuf, 2017, 116: 52 doi: 10.1016/j.ijmachtools.2017.01.003
|
[47] |
Mason T J. Therapeutic ultrasound an overview. Ultrason Sonochem, 2011, 18(4): 847 doi: 10.1016/j.ultsonch.2011.01.004
|
[48] |
Crum L, Bailey M, Hwang J H, et al. Therapeutic ultrasound: Recent trends and future perspectives. Phys Procedia, 2010, 3(1): 25 doi: 10.1016/j.phpro.2010.01.005
|
[49] |
Zhang Y, Wang C Y, Zhou S B, et al. A comparison review on orthopedic surgery using piezosurgery and conventional tools. Procedia CIRP, 2017, 65: 99 doi: 10.1016/j.procir.2017.04.024
|
[50] |
周沖, 楊福兵, 王斌, 等. 超聲骨刀在椎管內腫瘤切除術中的應用. 第三軍醫大學學報, 2016, 38(2): 200 https://www.cnki.com.cn/Article/CJFDTOTAL-DSDX201602019.htm
Zhou C, Yang F B, Wang B, et al. Piezoelectric surgery in intraspinal tumor resection. J Third Mil Med Univ, 2016, 38(2): 200 https://www.cnki.com.cn/Article/CJFDTOTAL-DSDX201602019.htm
|
[51] |
王保利, 楊馳, 蔡協藝. 超聲骨刀在口腔頜面外科中的應用概況. 口腔材料器械雜志, 2014, 23(2): 101 https://www.cnki.com.cn/Article/CJFDTOTAL-KCCL201402011.htm
Wang B L, Yang C, Cai X Y. Application overview of piezosurgery in oral and maxillofacial surgery. Chin J Dent Mater Dev, 2014, 23(2): 101 https://www.cnki.com.cn/Article/CJFDTOTAL-KCCL201402011.htm
|
[52] |
Khambay B S, Walmsley A D. Investigations into the use of an ultrasonic chisel to cut bone, Part 1: forces applied by clinicians. J Dent, 2000, 28(1): 31 doi: 10.1016/S0300-5712(99)00043-3
|
[53] |
Khambay B S, Walmsley A D. Investigations into the use of an ultrasonic chisel to cut bone, Part 2: cutting ability. J Dent, 2000, 28(1): 39 doi: 10.1016/S0300-5712(99)00044-5
|
[54] |
Alam K. Experimental and Numerical Analysis of Conventional and Ultrasonically-assisted Cutting of Bone[Dissertation]. Loughborough: Loughborough University, 2009
|
[55] |
Alam K, Khan M, Silberschmidt V V. Analysis of forces in conventional and ultrasonically assisted plane cutting of cortical bone. Proc Inst Mech Eng Part H J Eng Med, 2013, 227(6): 636 doi: 10.1177/0954411913485042
|
[56] |
Alam K, Silberschmidt V V. Analysis of temperature in conventional and ultrasonically-assisted drilling of cortical bone with infrared thermography. Technol Health Care, 2014, 22(2): 243 doi: 10.3233/THC-140813
|
[57] |
Sugita N, Shu L M, Shimada T, et al. Novel surgical machining via an impact cutting method based on fracture analysis with a discontinuum bone model. CIRP Ann, 2017, 66(1): 65 doi: 10.1016/j.cirp.2017.04.028
|
[58] |
顧煜炯. 超聲振動系統的研究及系列超聲手術刀的研制[學位論文]. 北京: 清華大學, 1996
Gu Y J. Research on Ultrasonic Vibration Systems and Development on Series of Ultrasonic Surgical Instruments[Dissertation]. Beijing: Tsinghua University, 1996
|
[59] |
Chen Y, Zhou Z Y, Zhang G H. Effects of different tissue loads on high power ultrasonic surgery scalpel. Ultrasound Med Biol, 2006, 32(3): 415 doi: 10.1016/j.ultrasmedbio.2005.12.012
|
[60] |
章剛華, 陳穎. 超聲骨科換能器的組織負載特性研究. 壓電與聲光, 2011, 33(6): 923 doi: 10.3969/j.issn.1004-2474.2011.06.020
Zhang G H, Chen Y. Research on tissue load characteristics of ultrasonic bone transducer. Piezoelectr Acoustoopt, 2011, 33(6): 923 doi: 10.3969/j.issn.1004-2474.2011.06.020
|
[61] |
Wang Y, Cao M, Zhao X R, et al. Experimental investigations and finite element simulation of cutting heat in vibrational and conventional drilling of cortical bone. Med Eng Phys, 2014, 36(11): 1408 doi: 10.1016/j.medengphy.2014.04.007
|