Citation: | LI Rui, XIA Yi, XU Lei, LIU Jian-hua, GANG Rui-qi, LUO Tong. Study of rapidly synthesis of ZnO nanorods by microwave hydrothermal method and photocatalytic performance[J]. Chinese Journal of Engineering, 2020, 42(1): 78-83. doi: 10.13374/j.issn2095-9389.2019.05.25.003 |
[1] |
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37 doi: 10.1038/238037a0
|
[2] |
Zhang J L, Wu Y M, Xing M Y, et al. Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides. Energy Environ Sci, 2010, 3(6): 715 doi: 10.1039/b927575d
|
[3] |
Chen S F, Zhao W, Liu W, et al. Preparation characterization and activity evaluation of p-n junction photocatalyst p-NiO/n-ZnO. J Sol-Gel Sci Technol, 2009, 50(3): 387 doi: 10.1007/s10971-009-1908-3
|
[4] |
Zhang M L, An T C, Hu X H, et al. Preparation and photocatalytic properties of a nanometer ZnO?SnO2 coupled oxide. Appl Catal A, 2004, 260(2): 215 doi: 10.1016/j.apcata.2003.10.025
|
[5] |
Vinodgopal K, Kmat P V. Enhanced rates of photocatalytic degradation of an azo dye using SnO2/TiO2 coupled semiconductor thin films. Environ Sci Technol, 1995, 29(3): 841 doi: 10.1021/es00003a037
|
[6] |
Othman A A, Ali M A, Ibrahim E M M, et al. Influence of Cu doping on structural, morphological, photoluminescence, and electrical properties of ZnO nanostructures synthesized by ice-bath assisted sonochemical method. J Alloys Compd, 2016, 683: 399 doi: 10.1016/j.jallcom.2016.05.131
|
[7] |
孫強強, 王書民, 王正民. 微波法制備納米棒狀氧化鋅及其摻雜改性. 材料科學與工程學報, 2013, 31(5):732 doi: 10.3969/j.issn.1673-2812.2013.05.023
Sun Q Q, Wang S M, Wang Z M. Preparation and doping modification of ZnO nanorods by microwave heating. J Mater Sci Eng, 2013, 31(5): 732 doi: 10.3969/j.issn.1673-2812.2013.05.023
|
[8] |
Thankachan R M, Joy N, Abraham J, et al. Enhanced photocatalytic performance of ZnO nanostructures produced via a quick microwave assisted route for the degradation of rhodamine in aqueous solution. Mater Res Bull, 2017, 85: 131 doi: 10.1016/j.materresbull.2016.09.009
|
[9] |
Mo M, Yu J C, Zhang L, et al. Self-assembly of ZnO nanorods and nanosheets into hollow microhemispheres and microspheres. Adv Mater, 2005, 17(6): 756 doi: 10.1002/adma.200401477
|
[10] |
Qi K Z, Cheng B, Yu J G, et al. Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J Alloys Compd, 2017, 727: 792 doi: 10.1016/j.jallcom.2017.08.142
|
[11] |
Ba-Abbad M M, Kadhum A A H, Mohamad A B, et al. The effect of process parameters on the size of ZnO nanoparticles synthesized via the sol-gel technique. J Alloys Compd, 2013, 550: 63 doi: 10.1016/j.jallcom.2012.09.076
|
[12] |
Hirate T, Kimpara T, Nakamura S, et al. Control of diameter of ZnO nanorods grown by chemical vapor deposition with laser ablation of ZnO. Superlattices Microstruct, 2007, 42(1-6): 409 doi: 10.1016/j.spmi.2007.04.011
|
[13] |
Labuayai S, Promarak V, Maensiri S. Synthesis and optical properties of nanocrystalline ZnO powders prepared by a direct thermal decomposition route. Appl Phys A, 2009, 94(4): 755 doi: 10.1007/s00339-008-4984-2
|
[14] |
Zhang B P, Binh N T, Wakatsuki K, et al. Pressure-dependent ZnO nanocrsytal growth in a chemical vapor deposition process. J Phys Chem B, 2004, 108(30): 10899 doi: 10.1021/jp048602i
|
[15] |
陳娜麗, 楊樹榮, 任亞鵬, 等. 棒狀氧化鋅的制備及其光催化性能. 蘭州理工大學學報, 2017, 43(2):76 doi: 10.3969/j.issn.1673-5196.2017.02.015
Chen N L, Yang S R, Ren Y P, et al. Preparation of rod like oxide of zinc and its photocatalytic performance. J Lanzhou Univ Technol, 2017, 43(2): 76 doi: 10.3969/j.issn.1673-5196.2017.02.015
|
[16] |
Polsongkram D, Chamninok P, Pukird S, et al. Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method. Physica B, 2008, 403(19-20): 3713 doi: 10.1016/j.physb.2008.06.020
|
[17] |
Chen G, Li L, Tao C Y, et al. Effects of microwave heating on microstructures and structure properties of the manganese ore. J Alloys Compd, 2016, 657: 515 doi: 10.1016/j.jallcom.2015.10.147
|
[18] |
Anas S, Rahul S, Babitha K B, et al. Microwave accelerated synthesis of zinc oxide nanoplates and their enhanced photocatalytic activity under UV and solar illuminations. Appl Surf Sci, 2015, 355: 98 doi: 10.1016/j.apsusc.2015.07.058
|
[19] |
Lavand A B, Malghe Y S. Synthesis, characterization and visible light photocatalytic activity of nitrogen-doped zinc oxide nanospheres. J Asian Ceram Soc, 2015, 3(3): 305 doi: 10.1016/j.jascer.2015.06.002
|
[20] |
景曉燕, 匡巍巍, 劉婧媛. 微波水熱法一步合成微米氧化鋅粒子. 功能材料, 2008, 39(7):1186 doi: 10.3321/j.issn:1001-9731.2008.07.038
Jing X Y, Kuang W W, Liu J Y. One-step preparation of zinc oxide micron-powders by microwave hydrolysis. J Funct Mater, 2008, 39(7): 1186 doi: 10.3321/j.issn:1001-9731.2008.07.038
|
[21] |
Shaporev A S, Ivanov V K, Baranchikov A E, et al. Microwave-assisted hydrothermal synthesis and photocatalytic activity of ZnO. Inorg Mater, 2007, 43(1): 35 doi: 10.1134/S0020168507010098
|
[22] |
Music S, Saric A, Popovic S. Formation of nanosize ZnO particles by thermal decomposition of zinc acetylacetonate monohydrate. Ceram Int, 2010, 36(3): 1117 doi: 10.1016/j.ceramint.2009.12.008
|
[23] |
Mendoza-Mendoza E, Nunez-Briones A G, Garcia-Cerda L A, et al. One-step synthesis of ZnO and Ag/ZnO heterostructures and their photocatalytic activity. Ceram Int, 2018, 44(6): 6176 doi: 10.1016/j.ceramint.2018.01.001
|
[24] |
Huang J F, Xia C K, Cao L Y, et al. Facile microwave hydrothermal synthesis of zinc oxide one-dimensional nanostructure with three-dimensional morphology. Mater Sci Eng B, 2008, 150(3): 187 doi: 10.1016/j.mseb.2008.05.014
|
[25] |
Cao G X, Hong K Q, Wang W D, et al. Fast growth of well-aligned ZnO nanowire arrays by a microwave heating method and their photocatalytic properties. Nanotechnology, 2016, 27(43): 435402 doi: 10.1088/0957-4484/27/43/435402
|
[26] |
Xu A J, Feng S S, Shen S J, et al. Enhanced visible light-responsive photocatalytic properties of Ag/BiPbO2Cl nanosheet composites. Nanoscale Res Lett, 2018, 13: 292 doi: 10.1186/s11671-018-2706-z
|
[27] |
Baruah S, Dutta J. Hydrothermal growth of ZnO nanostructures. Sci Technol Adv Mater, 2009, 10(1): 013001 doi: 10.1088/1468-6996/10/1/013001
|