Citation: | ZHAO Jia-wei, LAN Hong-bo, YANG Kun, PENG Zi-long, LI Di-chen. High-resolution fused deposition 3D printing based on electric-field-driven jet[J]. Chinese Journal of Engineering, 2019, 41(5): 652-661. doi: 10.13374/j.issn2095-9389.2019.05.012 |
[1] |
Ngo T D, Kashani A, Imbalzano G, et al. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Composites Part B: Eng, 2018, 143: 172 doi: 10.1016/j.compositesb.2018.02.012
|
[2] |
MacDonald E, Wicker R. Multiprocess 3D printing for increasing component functionality. Science, 2016, 353(6307): 1512 http://www.ncbi.nlm.nih.gov/pubmed/27708075
|
[3] |
Lewis J A, Ahn B Y. Device fabrication: Three-dimensional printed electronics. Nature, 2015, 518: 42 doi: 10.1038/518042a
|
[4] |
Zhang B, Seong B, Nguyen V, et al. 3D printing of high-resolution PLA-based structures by hybrid electrohydrodynamic and fused deposition modeling techniques. J Micromech Microeng, 2016, 26(2): 025015 doi: 10.1088/0960-1317/26/2/025015
|
[5] |
Bae J, Lee J, Hyun Kim S. Effects of polymer properties on jetting performance of electrohydrodynamic printing. J Appl Polym Sci, 2017, 134(35): 45044 doi: 10.1002/app.45044
|
[6] |
鄒淑亭, 蘭紅波, 錢壘, 等. 電流體動力噴射3D打印工藝參數對泰勒錐和打印圖形的影響和規律. 工程科學學報, 2018, 40(3): 373 doi: 10.13374/j.issn2095-9389.2018.03.014
Zou S T, Lan H B, Qian L, et al. Effects and rules of E-jet 3D printing process parameters on Taylor cone and printed patterns. Chin J Eng, 2018, 40(3): 373 doi: 10.13374/j.issn2095-9389.2018.03.014
|
[7] |
Onses M S, Sutanto E, Ferreira P M, et al. Mechanisms, capabilities, and applications of high-resolution electrohydrodynamic jet printing. Small, 2015, 11(34): 4237 doi: 10.1002/smll.201500593
|
[8] |
蘭紅波, 李滌塵, 盧秉恒. 微納尺度3D打印. 中國科學: 技術科學, 2015, 45(9): 919 https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201509002.htm
Lan H B, Li D C, Lu B H. Micro-and nanoscale 3D printing. Scientia Sinica (Technol), 2015, 45(9): 919 https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201509002.htm
|
[9] |
Dalton P D. Melt electrowriting with additive manufacturing principles. Curr Opin Biomed Eng, 2017, 2: 49 doi: 10.1016/j.cobme.2017.05.007
|
[10] |
Hrynevich A, El?i B S, Haigh J N, et al. Dimension-based design of melt electrowritten scaffolds. Small, 2018, 14(22): 1800232 doi: 10.1002/smll.201800232
|
[11] |
Hochleitner G, Jüngst T, Brown T D, et al. Additive manufacturing of scaffolds with sub-micron filaments via melt electrospinning writing. Biofabrication, 2015, 7(3): 035002 doi: 10.1088/1758-5090/7/3/035002
|
[12] |
Muerza-Cascante M L, Haylock D, Hutmacher D W, et al. Melt electrospinning and its technologization in tissue engineering. Tissue Eng Part B, Rev, 2015, 21(2): 187 doi: 10.1089/ten.teb.2014.0347
|
[13] |
Feiner R, Fleischer S, Shapira A, et al. Multifunctional degradable electronic scaffolds for cardiac tissue engineering. J Controlled Release, 2018, 281: 189 doi: 10.1016/j.jconrel.2018.05.023
|
[14] |
Grémare A, Guduric V, Bareille R, et al. Characterization of printed PLA scaffolds for bone tissue engineering. J Biomed Mater Res Part A, 2018, 106(4): 887 doi: 10.1002/jbm.a.36289
|
[15] |
Ovsianikov A, Khademhosseini A, Mironov V. The synergy of scaffold-based and scaffold-free tissue engineering strategies. Trends Biotechnol, 2018, 36(4): 348 doi: 10.1016/j.tibtech.2018.01.005
|