<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 5
May  2019
Turn off MathJax
Article Contents
ZHANG Yong, CHANG Cui-rong, WANG Shi-wen, GAO Hai-li, YAN Ji, JIA Xiao-dong, LUO He-wei, GAO Ke-zheng, ZHANG Ai-qin. Preparation and supercapacitive performance of pinecone-like NiMoO4/MnO2 composite material[J]. Chinese Journal of Engineering, 2019, 41(5): 646-651. doi: 10.13374/j.issn2095-9389.2019.05.011
Citation: ZHANG Yong, CHANG Cui-rong, WANG Shi-wen, GAO Hai-li, YAN Ji, JIA Xiao-dong, LUO He-wei, GAO Ke-zheng, ZHANG Ai-qin. Preparation and supercapacitive performance of pinecone-like NiMoO4/MnO2 composite material[J]. Chinese Journal of Engineering, 2019, 41(5): 646-651. doi: 10.13374/j.issn2095-9389.2019.05.011

Preparation and supercapacitive performance of pinecone-like NiMoO4/MnO2 composite material

doi: 10.13374/j.issn2095-9389.2019.05.011
More Information
  • Corresponding author: ZHANG Yong, E-mail: zy@zzuli.edu.cn
  • Received Date: 2018-05-17
  • Publish Date: 2019-05-01
  • Supercapacitors, also called electrochemical capacitors or ultracapacitors, have attracted increasing attention owing to their high specific capacitance, high power density, long lifecycle, fast charge-discharge ability, wide working temperature range, and environmental friendliness for mobile electronics, power grids, and hybrid electric vehicles. The electrode is the most important part of supercapacitors; therefore, the electrode material is the chief factor that determines the properties of supercapacitors. To enhance the performance of a supercapacitor, particularly its specific energy while retaining its intrinsic high specific power, several researchers have focused mainly on improving the properties of electrode materials. The major classes of materials applied for supercapacitors include various forms of carbon, transition metal oxides, and conductive polymers. Compared to the carbon materials and conducting polymer materials, transition metal oxides can achieve a much higher specific capacitance because of their high theoretical capacitance, well-defined electrochemical redox activity, low cost, and abundant resources. In particular, binary metal oxides, such as NiMoO4, MnMoO4, and CoMoO4, have been extensively studied as pseudocapacitor electrode materials because of their good electronic conductivity and rich redox reactions. In this study, pinecone-like NiMoO4/MnO2 composite materials were successfully synthesized using a facile hydrothermal method. Na2MoO4·2H2O, NiSO4·6H2O, and MnO2 were used as raw materials. The as-products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), galvanostatic charge-discharge, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The results show that when the optimal content of MnO2 reaches 10%, the obtained NiMoO4/MnO2 composite materials exhibits a pinecone-like porous morphology, with the particle size ranging from 200 to 600 nm. The results show that NiMoO4/MnO2 composite materials have excellent electrochemical properties. The discharge specific capacitance of NM0, NM5, NM10, NM15, and NM20 composites with corresponding MnO2 contents of 0%, 5%, 10%, 15%, and 20% are 260, 248, 650, 420, and 305 F·g-1, respectively, at a current density of 1 A·g-1. When the current density is up to 10 A·g-1, the initial discharge specific capacitance is 102 F·g-1. After 100-week cycles, the discharge specific capacitance of the NM10 sample is still 147 F·g-1. The improvements can be mainly attributed to the introduction of MnO2 in the NiMoO4/MnO2 composite materials to overcome the shortcomings of single NiMoO4.

     

  • loading
  • [1]
    陳雪丹, 陳碩翼, 喬志軍, 等. 超級電容器的應用. 儲能科學與技術, 2016, 5(6): 800 https://www.cnki.com.cn/Article/CJFDTOTAL-CNKX201606006.htm

    Chen X D, Chen S Y, Qiao Z J, et al. Applications of supercapacitors. Energy Storage Sci Technol, 2016, 5(6): 800 https://www.cnki.com.cn/Article/CJFDTOTAL-CNKX201606006.htm
    [2]
    趙雪, 邱平達, 姜海靜, 等. 超級電容器電極材料研究最新進展. 電子元件與材料, 2015, 34(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-DZAL201501001.htm

    Zhao X, Qiu P D, Jiang H J, et al. Latest research progress of electrode materials for supercapacitor. Electr Comp Mater, 2015, 34(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-DZAL201501001.htm
    [3]
    Oudghiri-Hassani H, Al Wadaani F. Preparation, characterization and catalytic activity of nickel molybdate (NiMoO4) nanoparticles. Molecules, 2018, 23(2): 273. doi: 10.3390/molecules23020273
    [4]
    Fang L X, Wang F, Zhai T L, et al. Hierarchical CoMoO4 nanoneedle electrodes for advanced supercapacitors and electrocatalytic oxygen evolution. Electrochim Acta, 2018, 259: 552 doi: 10.1016/j.electacta.2017.11.012
    [5]
    Li M G, Yang W W, Huang Y R, et al. Hierarchical mesoporous Co3O4@ZnCo2O4 hybrid nanowire arrays supported on Ni foam for high-performance asymmetric supercapacitors. Sci China Mater, 2018, 61(9): 1167 doi: 10.1007/s40843-017-9231-7
    [6]
    Lee G H, Lee S, Kim J C, et al. MnMoO4 electrocatalysts for superior long-life and high-rate lithium-oxygen batteries. Adv Energy Mater, 2017, 7(6): 1601741 doi: 10.1002/aenm.201601741
    [7]
    鄧霆. 超級電容器鈷基電極材料制備及其儲能機理的研究[學位論文]. 長春: 吉林大學, 2017

    Deng T. Investigations of Co-based Electrode Materials for Supercapacitors and the Atomic-Level Energy Storage Mechanism[Dissertation]. Changchun: Jilin University, 2017
    [8]
    Zhang Y, Feng H, Wu X B, et al. Progress of electrochemical capacitor electrode materials: a review. Int J Hydrogen Energy, 2009, 34(11): 4889 doi: 10.1016/j.ijhydene.2009.04.005
    [9]
    Lü J L, Miura H, Yang M. A novel mesoporous NiMoO4@rGO nanostructure for supercapacitor applications. Mater Lett, 2017, 194: 94 doi: 10.1016/j.matlet.2017.02.040
    [10]
    Zhou D, Cheng P P, Luo J X, et al. Facile synthesis of graphene@NiMoO4 nanosheet arrays on Ni foam for a high-performance asymmetric supercapacitor. J Mater Sci, 2017, 52(24): 13909 doi: 10.1007/s10853-017-1467-x
    [11]
    Zhang Z, Liu Y D, Huang Z Y, et al. Facile hydrothermal synthesis of NiMoO4@CoMoO4 hierarchical nanospheres for supercapacitor applications. Phys Chem Chem Phys, 2015, 17(32): 20795 doi: 10.1039/C5CP03331D
    [12]
    Cao M L, Bu Y, Lü X W, et al. Three-dimensional TiO2 nanowire@NiMoO4 ultrathin nanosheet core-shell arrays for lithium ion batteries. Appl Surf Sci, 2018, 435: 641 doi: 10.1016/j.apsusc.2017.11.165
    [13]
    Chen H, Yu L, Zhang J M, et al. Construction of hierarchical NiMoO4@MnO2 nanosheet arrays on titanium mesh for supercapacitor electrodes. Ceram Int, 2016, 42(16): 18058 doi: 10.1016/j.ceramint.2016.08.094
    [14]
    Zhao X, Wang H E, Chen X X, et al. Tubular MoO2 organized by 2D assemblies for fast and durable alkali-ion storage. Energy Storage Mater, 2018, 11: 161 doi: 10.1016/j.ensm.2017.10.010
    [15]
    Li Y F, Jian J M, Fan Y, et al. Facile one-pot synthesis of a NiMoO4/reduced graphene oxide composite as a pseudocapacitor with superior performance. RSC Adv, 2016, 6(73): 69627 doi: 10.1039/C6RA13955H
    [16]
    高海麗, 王力臻, 張勇, 等. Li2FeSiO4/C復合材料的制備及電化學性能. 硅酸鹽學報, 2014, 42(4): 528 https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201404017.htm

    Gao H L, Wang L Z, Zhang Y, et al. Synthesis and electrochemical performances of Li2FeSiO4/C composite materials. J Chin Ceramic Soc, 2014, 42(4): 528 https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201404017.htm
    [17]
    Wang X X, Zhang B Q, Yu M X, et al. Enhanced microwave absorption capacity of hierarchical structural MnO2@NiMoO4 composites. RSC Adv, 2016, 6(43): 36484 doi: 10.1039/C6RA05300A
    [18]
    Cai D P, Wang D D, Liu B, et al. Three-dimensional Co3O4@NiMoO4 core/shell nanowire arrays on Ni foam for electrochemical energy storage. ACS Appl Mater Interfaces, 2014, 6(7): 5050 doi: 10.1021/am500060m
    [19]
    Pang M J, Jiang S, Ji Y, et al. Comparison of α-NiMoO4 nanorods and hierarchical α-NiMoO4@δ-MnO2 core-shell hybrid nanorod/nanosheet aligned on Ni foam for supercapacitors. J Alloys Compd, 2017, 708: 14 doi: 10.1016/j.jallcom.2017.02.282
    [20]
    Ma X J, Zhang W B, Kong L B, et al. NiMoO4-modified MnO2 hybrid nanostructures on nickel foam: electrochemical performance and supercapacitor applications. New J Chem, 2015, 39(8): 6207 doi: 10.1039/C5NJ00639B
    [21]
    孫薇. 納米氫氧化鎳(鈷)電極材料的制備及其電化學性能研究[學位論文]. 哈爾濱: 哈爾濱工程大學, 2012

    Sun W. The Preparation of Nanometer Nickel (Cobalt) Hydroxide Electrode Materials and Their Electrchemical Properties[Dissertation]. Harbin: Harbin Engineering University, 2012
    [22]
    Wang X H, Xia H Y, Gao J, et al. Enhanced cycle performance of ultraflexible asymmetric supercapacitors based on a hierarchical MnO2@NiMoO4 core-shell nanostructure and porous carbon. J Mater Chem A, 2016, 4(46): 18181 doi: 10.1039/C6TA07836B
    [23]
    Kazemi S H, Bahmani F, Kazemi H, et al. Binder-free electrodes of NiMoO4/graphene oxide nanosheets: synthesis, characterization and supercapacitive behavior. RSC Adv, 2016, 6(112): 111170 doi: 10.1039/C6RA23076H
    [24]
    Lin J H, Liang H Y, Jia H N, et al. Hierarchical CuCo2O4@NiMoO4 core-shell hybrid arrays as a battery-like electrode for supercapacitors. Inorg Chem Front, 2017, 4(9): 1575 doi: 10.1039/C7QI00361G
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(6)

    Article views (1031) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频