Citation: | HAN Xing, YAN Zhi-kai, CHEN Ting, ZHANG Mei, GUO Min. Phase transformation and catalytic performance of metal-doped MgFe2O4 prepared from saprolite laterite[J]. Chinese Journal of Engineering, 2019, 41(5): 600-609. doi: 10.13374/j.issn2095-9389.2019.05.006 |
[1] |
Turhan K, Durukan I, Ozturkcan S A, et al. Decolorization of textile basic dye in aqueous solution by ozone. Dyes Pigments, 2012, 92(3): 897 doi: 10.1016/j.dyepig.2011.07.012
|
[2] |
Singh K, Arora S. Removal of synthetic textile dyes from wastewaters: a critical review on present treatment technologies. Crit Rev Environ Sci Technol, 2011, 41(9): 807 doi: 10.1080/10643380903218376
|
[3] |
Pliego G, Zazo J A, Garcia-Mu?oz P, et al. Trends in the intensification of the Fenton process for wastewater treatment: an overview. Crit Rev Environ Sci Technol, 2015, 45(24): 2611 doi: 10.1080/10643389.2015.1025646
|
[4] |
Nidheesh P V. Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: a review. RSC Adv, 2015, 5(51): 40552 doi: 10.1039/C5RA02023A
|
[5] |
Navalon S, Alvaro M, Garcia H. Heterogeneous Fenton catalysts based on clays, silicas and zeolites. Appl Catal B: Environ, 2010, 99(1-2): 1 doi: 10.1016/j.apcatb.2010.07.006
|
[6] |
Munoz M, de Pedro Z M, Casas J A, et al. Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation-A review. Appl Catal B: Environ, 2015, 176-177: 249 doi: 10.1016/j.apcatb.2015.04.003
|
[7] |
Zhong Y H, Liang X L, He Z S, et al. The constraints of transition metal substitutions (Ti, Cr, Mn, Co and Ni) in magnetite on its catalytic activity in heterogeneous Fenton and UV/Fenton reaction: from the perspective of hydroxyl radical generation. Appl Catal B: Environ, 2014, 150-151: 612 doi: 10.1016/j.apcatb.2014.01.007
|
[8] |
Liang X L, He Z S, Zhong Y H, et al. The effect of transition metal substitution on the catalytic activity of magnetite in heterogeneous Fenton reaction: in interfacial view. Colloids Surf A: Physicochem Eng Aspects, 2013, 435: 28 doi: 10.1016/j.colsurfa.2012.12.038
|
[9] |
Wang Y B, Zhao H Y, Li M F, et al. Magnetic ordered mesoporous copper ferrite as a heterogeneous Fenton catalyst for the degradation of imidacloprid. Appl Catal B: Environ, 2014, 147: 534 doi: 10.1016/j.apcatb.2013.09.017
|
[10] |
Sharma R, Bansal S, Singhal S. Tailoring the photo-Fenton activity of spinel ferrites (MFe2O4) by incorporating different cations (M=Cu, Zn, Ni and Co) in the structure. RSC Adv, 2015, 5(8): 6006 doi: 10.1039/C4RA13692F
|
[11] |
Wu R C, Qu J H. Removal of water-soluble azo dye by the magnetic material MnFe2O4. J Chem Technol Biotechnol, 2005, 80(1): 20 doi: 10.1002/jctb.1142
|
[12] |
Rad L R, Ghazani B F, Irani M, et al. Comparison study of phenol degradation using cobalt ferrite nanoparticles synthesized by hydrothermal and microwave methods. Desalination Water Treat, 2015, 56(12): 3393 doi: 10.1080/19443994.2014.977960
|
[13] |
Tan P L. Active phase, catalytic activity, and induction period of Fe/zeolite material in nonoxidative aromatization of methane. J Catal, 2016, 338: 21 doi: 10.1016/j.jcat.2016.01.027
|
[14] |
Dhiman M, Goyal A, Kumar V, et al. Designing different morphologies of NiFe2O4 for tuning of structural, optical and magnetic properties for catalytic advancements. New J Chem, 2016, 40(12): 10418 doi: 10.1039/C6NJ03209E
|
[15] |
張廷珍, 李建, 文榜才, 等. 二元CoFe2O4-p-MgFe2O4磁性液體的制備及磁化特性研究. 西南大學學報(自然科學版), 2009, 31(7): 88 https://www.cnki.com.cn/Article/CJFDTOTAL-XNND200907016.htm
Zhang T Z, Li J, Wen B C, et al. Preparation and magnetization behaviors of CoFe2O4-p-MgFe2O4 binary ferrofluids. J Southwest Univ Nat Sci Ed, 2009, 31(7): 88 https://www.cnki.com.cn/Article/CJFDTOTAL-XNND200907016.htm
|
[16] |
Khot V M, Salunkhe A B, Thorat N D, et al. Induction heating studies of combustion synthesized MgFe2O4 nanoparticles for hyperthermia applications. J Magn Magn Mater, 2013, 332: 48 doi: 10.1016/j.jmmm.2012.12.010
|
[17] |
Zhang C L, Yeo S, Horibe Y, et al. Coercivity and nanostructure in magnetic spinel Mg(Mn, Fe)2O4. Appl Phys Lett, 2007, 90(13): 133123 doi: 10.1063/1.2717568
|
[18] |
Dillert R, Taffa D H, Wark M, et al. Research update: photoelectrochemical water splitting and photocatalytic hydrogen production using ferrites (MFe2O4) under visible light irradiation. APL Mater, 2015, 3(10): 104001 doi: 10.1063/1.4931763
|
[19] |
Jiang J H, Fan W Q, Zhang X, et al. Rod-in-tube nanostructure of MgFe2O4: electrospinning synthesis and photocatalytic activities of tetracycline. New J Chem, 2016, 40(1): 538 doi: 10.1039/C5NJ02491A
|
[20] |
Fan W Q, Li M, Bai H Y, et al. Fabrication of MgFe2O4/MoS2 heterostructure nanowires for photoelectrochemical catalysis. Langmuir, 2016, 32(6): 1629 doi: 10.1021/acs.langmuir.5b03887
|
[21] |
Shen Y, Wu Y B, Li X Y, et al. One-pot synthesis of MgFe2O4 nanospheres by solvothermal method. Mater Lett, 2013, 96: 85 doi: 10.1016/j.matlet.2013.01.023
|
[22] |
Sasaki T, Ohara S, Naka T, et al. Continuous synthesis of fine MgFe2O4 nanoparticles by supercritical hydrothermal reaction. J Supercrit Fluids, 2010, 53(1-3): 92 doi: 10.1016/j.supflu.2009.11.005
|
[23] |
Ghanbari D, Salavati-Niasari M. Hydrothermal synthesis of different morphologies of MgFe2O4 and magnetic cellulose acetate nanocomposite. Korean J Chem Eng, 2015, 32(5): 903 doi: 10.1007/s11814-014-0306-x
|
[24] |
Robinson D, Mcdonald R, Zhang W S, et al. Developments in the hydrometallurgical processing of nickel laterites // COM2017 Conference of Metallurgists. Vancouver, 2017: 9526
|
[25] |
Quast K, Connor J N, Skinner W, et al. Preconcentration strategies in the processing of nickel laterite ores Part 1: literature review. Miner Eng, 2015, 79: 261 doi: 10.1016/j.mineng.2015.03.017
|
[26] |
Yan Z K, Gao J M, Li Y, et al. Hydrothermal synthesis and structure evolution of metal-doped magnesium ferrite from saprolite laterite. RSC Adv, 2015, 5(112): 92778 doi: 10.1039/C5RA17145H
|
[27] |
Goh K H, Lim T T, Dong Z L. Application of layered double hydroxides for removal of oxyanions: a review. Water Res, 2008, 42(6-7): 1343 doi: 10.1016/j.watres.2007.10.043
|
[28] |
Theiss F L, Ayoko G A, Frost R L. Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods——a review. Appl Surf Sci, 2016, 383: 200 doi: 10.1016/j.apsusc.2016.04.150
|
[29] |
Kang D J, Yu X L, Tong S R, et al. Performance and mechanism of Mg/Fe layered double hydroxides for fluoride and arsenate removal from aqueous solution. Chem Eng J, 2013, 228: 731 doi: 10.1016/j.cej.2013.05.041
|
[30] |
Sun Y Y, Ji G B, Zheng M B, et al. Synthesis and magnetic properties of crystalline mesoporous CoFe2O4 with large specific surface area. J Mater Chem, 2010, 20(5): 945 doi: 10.1039/B919090B
|
[31] |
Tshabalala K G, Cho S H, Park J K, et al. Luminescent properties and X-ray photoelectron spectroscopy study of ZnAl2O4: Ce3+, Tb3+ phosphor. J Alloys Compd, 2011, 509(41): 10115 doi: 10.1016/j.jallcom.2011.08.054
|
[32] |
Zhang H, Qi R, Evans D G, et al. Synthesis and characterization of a novel nano-scale magnetic solid base catalyst involving a layered double hydroxide supported on a ferrite core. J Solid State Chem, 2004, 177(3): 772 doi: 10.1016/j.jssc.2003.09.009
|
[33] |
Tudorache F, Popa P D, Dobromir M, et al. Studies on the structure and gas sensing properties of nickel-cobalt ferrite thin films prepared by spin coating. Mater Sci Eng B, 2013, 178(19): 1334 doi: 10.1016/j.mseb.2013.03.019
|
[34] |
Babuponnusami A, Muthukumar K. A review on Fenton and improvements to the Fenton process for wastewater treatment. J Environ Chem Eng, 2014, 2(1): 557 doi: 10.1016/j.jece.2013.10.011
|
[35] |
Pantopoulos K, Schipper H M, et al. Principles of Free Radical Biomedicine. 1st Ed. New York: Nova Science Publishers Inc, 2012
|