<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 5
May  2019
Turn off MathJax
Article Contents
HAN Xing, YAN Zhi-kai, CHEN Ting, ZHANG Mei, GUO Min. Phase transformation and catalytic performance of metal-doped MgFe2O4 prepared from saprolite laterite[J]. Chinese Journal of Engineering, 2019, 41(5): 600-609. doi: 10.13374/j.issn2095-9389.2019.05.006
Citation: HAN Xing, YAN Zhi-kai, CHEN Ting, ZHANG Mei, GUO Min. Phase transformation and catalytic performance of metal-doped MgFe2O4 prepared from saprolite laterite[J]. Chinese Journal of Engineering, 2019, 41(5): 600-609. doi: 10.13374/j.issn2095-9389.2019.05.006

Phase transformation and catalytic performance of metal-doped MgFe2O4 prepared from saprolite laterite

doi: 10.13374/j.issn2095-9389.2019.05.006
More Information
  • Corresponding author: GUO Min, E-mail: guomin@ustb.edu.cn
  • Received Date: 2018-04-28
  • Publish Date: 2019-05-01
  • Heterogeneous Fenton-like method has attracted considerable attention because of its potential effectiveness in mineralization of organic contaminants in a wide range of reaction medium pH. Spinel ferrites MFe2O4 (M=Fe, Zn, Cu, Ni, Mn, Co) as heterogeneous Fenton-like catalysts have been studied extensively due to their good catalytic activity, prominent physical and chemical stability, and excellent magnetic properties, which allow their easy separation from the reaction medium by magnetic field for further circular utilization. Considering the group of ferrites, limited research focused on the utilization of MgFe2O4 as heterogeneous Fenton catalytic agent, whereas most of the catalysts are synthesized by pure chemical reagents. In this study, magnetic multi-metal co-doped MgFe2O4 heterogeneous Fenton-like catalyst was synthesized from saprolite laterite by acid leaching-hydrothermal calcination method. The effect of calcination temperature on the phase, morphology, specific surface area, and pore size distribution of samples were characterized by X-ray diffraction, scanning electron microscopy, Fourier-transform infrared, Brunauer-Emmett-Teller/Barrett-Joyner-Halenda analysis. The catalytic activity of the as-prepared products as heterogeneous Fenton catalysts for the degradation of Rhodamine B (RhB) solution was also investigated. The results show that the layered double (multi) hydroxides coupled with a portion of magnesium ferrite are synthesized by hydrothermal method, and the cubic crystal MgFe2O4 is obtained by decomposition of the layered double (multi) hydroxides after calcination above 300℃. With the increase in calcining temperature, the crystallinity of the products increases, and the particle size becomes larger. The morphology gradually grows to near spheroidal particles, and the dispersion degree gradually increases. Meanwhile, the pore size becomes larger, and the specific surface area is reduced. Calcination of sample H-C500 exhibits the best catalytic activity for the degradation of RhB after 500℃, achieving 97.8% degradation efficiency of 10 mg·L-1 RhB after 300 min at the reaction conditions of 45℃, pH 6.44, 0.625 g·L-1 catalyst dosage, and 1.0% (volume fraction) H2O2. The total organic carbon (TOC) removal could reach 77.8%. The reused catalyst can still maintain high activity, and after three consecutive degradation cycles, the reduction of degradation efficiency and TOC removal efficiency are less than 3.0% and 5.0%, respectively.

     

  • loading
  • [1]
    Turhan K, Durukan I, Ozturkcan S A, et al. Decolorization of textile basic dye in aqueous solution by ozone. Dyes Pigments, 2012, 92(3): 897 doi: 10.1016/j.dyepig.2011.07.012
    [2]
    Singh K, Arora S. Removal of synthetic textile dyes from wastewaters: a critical review on present treatment technologies. Crit Rev Environ Sci Technol, 2011, 41(9): 807 doi: 10.1080/10643380903218376
    [3]
    Pliego G, Zazo J A, Garcia-Mu?oz P, et al. Trends in the intensification of the Fenton process for wastewater treatment: an overview. Crit Rev Environ Sci Technol, 2015, 45(24): 2611 doi: 10.1080/10643389.2015.1025646
    [4]
    Nidheesh P V. Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: a review. RSC Adv, 2015, 5(51): 40552 doi: 10.1039/C5RA02023A
    [5]
    Navalon S, Alvaro M, Garcia H. Heterogeneous Fenton catalysts based on clays, silicas and zeolites. Appl Catal B: Environ, 2010, 99(1-2): 1 doi: 10.1016/j.apcatb.2010.07.006
    [6]
    Munoz M, de Pedro Z M, Casas J A, et al. Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation-A review. Appl Catal B: Environ, 2015, 176-177: 249 doi: 10.1016/j.apcatb.2015.04.003
    [7]
    Zhong Y H, Liang X L, He Z S, et al. The constraints of transition metal substitutions (Ti, Cr, Mn, Co and Ni) in magnetite on its catalytic activity in heterogeneous Fenton and UV/Fenton reaction: from the perspective of hydroxyl radical generation. Appl Catal B: Environ, 2014, 150-151: 612 doi: 10.1016/j.apcatb.2014.01.007
    [8]
    Liang X L, He Z S, Zhong Y H, et al. The effect of transition metal substitution on the catalytic activity of magnetite in heterogeneous Fenton reaction: in interfacial view. Colloids Surf A: Physicochem Eng Aspects, 2013, 435: 28 doi: 10.1016/j.colsurfa.2012.12.038
    [9]
    Wang Y B, Zhao H Y, Li M F, et al. Magnetic ordered mesoporous copper ferrite as a heterogeneous Fenton catalyst for the degradation of imidacloprid. Appl Catal B: Environ, 2014, 147: 534 doi: 10.1016/j.apcatb.2013.09.017
    [10]
    Sharma R, Bansal S, Singhal S. Tailoring the photo-Fenton activity of spinel ferrites (MFe2O4) by incorporating different cations (M=Cu, Zn, Ni and Co) in the structure. RSC Adv, 2015, 5(8): 6006 doi: 10.1039/C4RA13692F
    [11]
    Wu R C, Qu J H. Removal of water-soluble azo dye by the magnetic material MnFe2O4. J Chem Technol Biotechnol, 2005, 80(1): 20 doi: 10.1002/jctb.1142
    [12]
    Rad L R, Ghazani B F, Irani M, et al. Comparison study of phenol degradation using cobalt ferrite nanoparticles synthesized by hydrothermal and microwave methods. Desalination Water Treat, 2015, 56(12): 3393 doi: 10.1080/19443994.2014.977960
    [13]
    Tan P L. Active phase, catalytic activity, and induction period of Fe/zeolite material in nonoxidative aromatization of methane. J Catal, 2016, 338: 21 doi: 10.1016/j.jcat.2016.01.027
    [14]
    Dhiman M, Goyal A, Kumar V, et al. Designing different morphologies of NiFe2O4 for tuning of structural, optical and magnetic properties for catalytic advancements. New J Chem, 2016, 40(12): 10418 doi: 10.1039/C6NJ03209E
    [15]
    張廷珍, 李建, 文榜才, 等. 二元CoFe2O4-p-MgFe2O4磁性液體的制備及磁化特性研究. 西南大學學報(自然科學版), 2009, 31(7): 88 https://www.cnki.com.cn/Article/CJFDTOTAL-XNND200907016.htm

    Zhang T Z, Li J, Wen B C, et al. Preparation and magnetization behaviors of CoFe2O4-p-MgFe2O4 binary ferrofluids. J Southwest Univ Nat Sci Ed, 2009, 31(7): 88 https://www.cnki.com.cn/Article/CJFDTOTAL-XNND200907016.htm
    [16]
    Khot V M, Salunkhe A B, Thorat N D, et al. Induction heating studies of combustion synthesized MgFe2O4 nanoparticles for hyperthermia applications. J Magn Magn Mater, 2013, 332: 48 doi: 10.1016/j.jmmm.2012.12.010
    [17]
    Zhang C L, Yeo S, Horibe Y, et al. Coercivity and nanostructure in magnetic spinel Mg(Mn, Fe)2O4. Appl Phys Lett, 2007, 90(13): 133123 doi: 10.1063/1.2717568
    [18]
    Dillert R, Taffa D H, Wark M, et al. Research update: photoelectrochemical water splitting and photocatalytic hydrogen production using ferrites (MFe2O4) under visible light irradiation. APL Mater, 2015, 3(10): 104001 doi: 10.1063/1.4931763
    [19]
    Jiang J H, Fan W Q, Zhang X, et al. Rod-in-tube nanostructure of MgFe2O4: electrospinning synthesis and photocatalytic activities of tetracycline. New J Chem, 2016, 40(1): 538 doi: 10.1039/C5NJ02491A
    [20]
    Fan W Q, Li M, Bai H Y, et al. Fabrication of MgFe2O4/MoS2 heterostructure nanowires for photoelectrochemical catalysis. Langmuir, 2016, 32(6): 1629 doi: 10.1021/acs.langmuir.5b03887
    [21]
    Shen Y, Wu Y B, Li X Y, et al. One-pot synthesis of MgFe2O4 nanospheres by solvothermal method. Mater Lett, 2013, 96: 85 doi: 10.1016/j.matlet.2013.01.023
    [22]
    Sasaki T, Ohara S, Naka T, et al. Continuous synthesis of fine MgFe2O4 nanoparticles by supercritical hydrothermal reaction. J Supercrit Fluids, 2010, 53(1-3): 92 doi: 10.1016/j.supflu.2009.11.005
    [23]
    Ghanbari D, Salavati-Niasari M. Hydrothermal synthesis of different morphologies of MgFe2O4 and magnetic cellulose acetate nanocomposite. Korean J Chem Eng, 2015, 32(5): 903 doi: 10.1007/s11814-014-0306-x
    [24]
    Robinson D, Mcdonald R, Zhang W S, et al. Developments in the hydrometallurgical processing of nickel laterites // COM2017 Conference of Metallurgists. Vancouver, 2017: 9526
    [25]
    Quast K, Connor J N, Skinner W, et al. Preconcentration strategies in the processing of nickel laterite ores Part 1: literature review. Miner Eng, 2015, 79: 261 doi: 10.1016/j.mineng.2015.03.017
    [26]
    Yan Z K, Gao J M, Li Y, et al. Hydrothermal synthesis and structure evolution of metal-doped magnesium ferrite from saprolite laterite. RSC Adv, 2015, 5(112): 92778 doi: 10.1039/C5RA17145H
    [27]
    Goh K H, Lim T T, Dong Z L. Application of layered double hydroxides for removal of oxyanions: a review. Water Res, 2008, 42(6-7): 1343 doi: 10.1016/j.watres.2007.10.043
    [28]
    Theiss F L, Ayoko G A, Frost R L. Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods——a review. Appl Surf Sci, 2016, 383: 200 doi: 10.1016/j.apsusc.2016.04.150
    [29]
    Kang D J, Yu X L, Tong S R, et al. Performance and mechanism of Mg/Fe layered double hydroxides for fluoride and arsenate removal from aqueous solution. Chem Eng J, 2013, 228: 731 doi: 10.1016/j.cej.2013.05.041
    [30]
    Sun Y Y, Ji G B, Zheng M B, et al. Synthesis and magnetic properties of crystalline mesoporous CoFe2O4 with large specific surface area. J Mater Chem, 2010, 20(5): 945 doi: 10.1039/B919090B
    [31]
    Tshabalala K G, Cho S H, Park J K, et al. Luminescent properties and X-ray photoelectron spectroscopy study of ZnAl2O4: Ce3+, Tb3+ phosphor. J Alloys Compd, 2011, 509(41): 10115 doi: 10.1016/j.jallcom.2011.08.054
    [32]
    Zhang H, Qi R, Evans D G, et al. Synthesis and characterization of a novel nano-scale magnetic solid base catalyst involving a layered double hydroxide supported on a ferrite core. J Solid State Chem, 2004, 177(3): 772 doi: 10.1016/j.jssc.2003.09.009
    [33]
    Tudorache F, Popa P D, Dobromir M, et al. Studies on the structure and gas sensing properties of nickel-cobalt ferrite thin films prepared by spin coating. Mater Sci Eng B, 2013, 178(19): 1334 doi: 10.1016/j.mseb.2013.03.019
    [34]
    Babuponnusami A, Muthukumar K. A review on Fenton and improvements to the Fenton process for wastewater treatment. J Environ Chem Eng, 2014, 2(1): 557 doi: 10.1016/j.jece.2013.10.011
    [35]
    Pantopoulos K, Schipper H M, et al. Principles of Free Radical Biomedicine. 1st Ed. New York: Nova Science Publishers Inc, 2012
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article views (1078) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频